K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 8 2021

\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))

\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)

14 tháng 8 2021

1. Định lí Pytago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

ΔABC vuông tại A thì ta có:

AB2+AC2=BC2

a2+b2=c2

Daya là định Py ta go Về tam giác vuông Hok tốt
NM
9 tháng 8 2021

Gọi \(M\left(0,y\right)\in Oy\)

ta có M cách đều A,B hay \(MA=MB\Leftrightarrow1+y^2=2^2+\left(y-3\right)^2\)

\(\Leftrightarrow6y=12\Leftrightarrow y=2\)

Vậy tọa độ của M khi đó là (0,2)

31 tháng 7 2021

Mệnh đề nào sau đây đúng? Giải thích tại sao lại chọn đáp án đây.

A. Có duy nhất một vectơ cùng phương với mọi vectơ.

B. Có ít nhất hai vectơ có cùng phương với mọi vectơ.

C. Có vô số vectơ cùng phương với mọi vectơ.

D. Không có vectơ nào cùng phương với mọi vectơ

Vecto →0 là vecto duy nhất cùng phương với mọi vecto.

31 tháng 7 2021

A nha . Vì 

Ta có vectơ ⇀00⇀ cùng hướng với mọi vectơ nên nó cùng phương với mọi véc tơ.

Đáp án cần chọn là: A

31 tháng 7 2021

B nha bạn

31 tháng 7 2021

Trả lời

A.Có duy nhất một vectơ cùng phương với mọi vectơ. 

#HT#

22 tháng 7 2021

(a+b) + (b+c) - (c-a) = a+b+b+c-a+a = (a+a)+(b+b)+(c-c) = 2a+2b = 2.(a+b)

22 tháng 7 2021

(a+b)+(b+c)-(c-a)

=a+b+b+c-c+a

=2a+2b

#H

22 tháng 6 2021

TRẢ LỜI:

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

    Điều kiện là x, y, z nguyên dương

    Ta có hệ phương trình

    x + y + z = 1450 (1)

    4x + 2y + z = 3000 (2)

    2x + y - 2z = 0 (3)

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được

    3x + y = 1550

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

    7x + 4y = 4450.

    Giải hệ gồm hai phương trình (4) và (5) ta được.

    x = 350, y = 500.

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.

21 tháng 6 2021

Má mày giúp tao bài tao gửi đii:(

DD
21 tháng 6 2021

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)