Cho đoạn thẳng AB có độ dài bằng 1. Trên tia Ax vuông góc với AB tại A, lấy n điểm bất kì \(\left(n\ge2\right)\). Gọi các điểm đó lần lượt là \(M_1,M_2,M_3,...,M_n\). Biết rằng \(AM_1+AM_2+AM_3+...+AM_n=n\). Chứng minh rằng \(\frac{1}{BM_1^2}+\frac{1}{BM_2^2}+\frac{1}{BM_3^2}+...+\frac{1}{BM_n^2}\ge\frac{n}{2}\)(đề hoàn chỉnh nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.1 . Vẽ vòng tâm \(O\), bán kính \(R\). Gỉa sử \(R=1\)
2 . Từ 1 điểm \(B\)trên vòng tròn kẻ đường thẳng qua \(O\)và \(B\)
3 . Vẽ điểm \(D\)của \(OB\)
4 . Kẻ đường thăng vuông góc OB tại O , cắt vòng tròn qua hai điểm tại P
5 . Vẽ phân giác cuả ODP , cắt OP tại N
6 . Kẻ đường thẳng vuông góc với OP tại N cắt vòng tròn hai điểm tại P
Cái trên là ví dụ nha
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Tham khảo
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
Khó tởm
khó thế ai làm nổi