giải hpt\(\left\{{}\begin{matrix}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x^2+2x+22}-\sqrt{y}=y^2+2y+1\\\sqrt{y^2+2y+22}-\sqrt{x}=x^2+2x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-x-y=1\\4x^3-12x^2+9x=-y^3+6y+7\end{matrix}\right.\)