Cho a,b,c dương và tổng a, b, c là 3 .
Tìm MinA = \(\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{a}{a+bc}=\frac{a}{a(a+b+c)+bc}=\frac{a}{(a+b)(a+c)}\)
Thực hiện tương tự với các phân thức còn lại thu được:
\(\text{VT}=\frac{a(b+c)+b(a+c)+c(a+b)}{(a+b)(b+c)(c+a)}=\frac{2(ab+bc+ac)}{(a+b)(b+c)(c+a)}\) \((1)\)
Ta để ý bổ đề sau:
\((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)
Chứng minh:
\(\prod(a+b)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\text{VP}\)
Áp dụng vào bài toán:
\((a+b)(b+c)(c+a)\geq \frac{8}{9}(ab+bc+ac)\) \((2)\)
Từ \((1),(2)\Rightarrow \text{VT}\leq \frac{9}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
Tâm I thuộc đường thẳng x+y-3=0 nên I(a;3-a).
Đường tròn có tâm I bán kính R=1 tiếp xúc với trục hoành nên
d(I,Ox)=|3-a|=1, suy ra 3-a=1 hoặc 3-a=-1
Bài làm đúng phong cách trắc nghiệm
A) loại
B) xét (lọai kiểu gì phải có góc \(\left(\pi-\alpha\right)\)
C) loại kiểu gì phải có yếu tố d+d=2d
D) xét có đủ yếu tố => duy nhất có thể nếu không đúng => đề sai
Chọn (D)
Lời giải
kéo dài OO' cắt vòng tròn bên Phải tại D cắt vòng tron bên trái tai C
Góc BOC =pi-anpha
góc AOD =alpha
\(L=2\left(L_1+L_2+L_3\right)\)
\(\left\{{}\begin{matrix}L_1=d\\L_2=AO.\alpha=\alpha r\\L_3=BO'.\left(\pi-\alpha\right)=\left(\pi-\alpha\right)R\end{matrix}\right.\)
Bài 1
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
\(M=\dfrac{x+12-15}{x}+\dfrac{y+12-15}{y}+\dfrac{z+12-15}{z}\)
\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)
\(M=1-\dfrac{3}{x}+1-\dfrac{3}{y}+1-\dfrac{3}{z}\)
\(M=3-\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)\)
\(M=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}=\dfrac{3}{4}\)
\(\Rightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{4}\)
\(\Rightarrow3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow M\le\dfrac{3}{4}\)
Vậy \(M_{max}=\dfrac{3}{4}\)
Dấu " = " xảy ra khi \(x=y=z=4\)
Bài 2
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Xét \(\dfrac{a^3+b^3+c^3}{4abc}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{4abc}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}+\dfrac{3}{4}\)
\(=\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)-9\left(ab+bc+ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{9}{4}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{4abc}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}-\dfrac{3}{2}\) (1)
Xét \(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{1}{30}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\) (2)
Cộng (1) và (2) theo từng vế
\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{225\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{1}{225}}\)
\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge\dfrac{2}{15}\)
\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\ge\dfrac{2}{15}-\dfrac{22}{15}=-\dfrac{4}{3}\)
\(\Leftrightarrow P\ge-\dfrac{4}{3}\)
Vậy \(P_{min}=\dfrac{-4}{3}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)
Từ (1) , (2) , (3)
\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng công thức tính góc giữa hai đường thẳng thôi:
\(\cos (d,\Delta)=\frac{|(m+3)(m-2)-(m-1)(m+1)|}{\sqrt{(m+3)^2+(m-1)^2}\sqrt{(m-2)^2+(m+1)^2}}=\cos 90=0\)
\(\Leftrightarrow (m+3)(m-2)-(m-1)(m+1)=0\)
\(\Leftrightarrow m-5=0\Leftrightarrow m=5\)
Vậy $m=5$
Bài 1)
Áp dụng định lý hàm số sin kết hợp TC dãy tỉ số bằng nhau:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)
\(\Rightarrow 2\sin A=\sin B+\sin C\) (đpcm)
Bài 3)
Để PT đã cho có ba nghiệm nguyên phân biệt thì phương trình \(x^2-3x+m=0\) phải có hai nghiệm nguyên phân biệt khác $3$
Để đảm bảo thì \(m\in\mathbb{Z}\) và \(3^2-2.3+m\neq 0\leftrightarrow m\neq 0\)
Và \(\Delta=9-4m>0\Leftrightarrow m<\frac{9}{4}\rightarrow m\leq 2\)
Áp dụng định lý Viet ta có nếu $x_1,x_2$ là hai nghiệm của PT thì \(\)
\(\left\{{}\begin{matrix}x_1x_2=m\\x_1+x_2=3\left(1\right)\end{matrix}\right.\)
Có vô số nghiệm khác $3$ thỏa mãn $(1)$ nên chỉ cần điều kiện \(m\in\mathbb{Z},m\leq 2,m\neq 0\) là thỏa mãn.
Bài 2)
Từ PT \((2)\Rightarrow x=-(m+1)y\)
Thay vào PT \((1)\Rightarrow -(m+1)y^2-4my-(4m-3)=0\)
\(\Leftrightarrow (m+1)y^2+4my+(4m-3)=0\) \((1)\)
Với \(m=-1\rightarrow x=0\rightarrow 4y=-4-3\rightarrow y=\frac{-7}{4}\), tức là PT có nghiệm
Với \(m\neq -1\) thì \((1)\) là một PT bậc 2
Để có nghiệm thì \(\Delta'=(2m)^2-(m+1)(4m-3)\geq 0\Leftrightarrow -m+3\geq 0\)
\(\Leftrightarrow m\leq 3\)
Vậy từ 2TH trên suy ra chỉ cần \(m\leq 3\) thì thỏa mãn .
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)
\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$
Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$
Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)
Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)
Từ 3 đường thẳng cho trước , ta xác định được tọa độ của A và B:
xA-3yA+11=0, 3xA+7yA-15 =0 suy ra xA=-2, yA=3
xB-3yB=11=0; 3xB-5yB+13=0, suy ra xB=4; yB=5
a) Gọi đường thẳng qua BC là y=ax+b; vì nó vuông góc với đt AH 3x+7y-15=0, vậy a= 7/3
yB=(7/3).xB+b từ đó b= yB - 7xB/3= 5-7.4/3= -13/3
Vậy đt qua BC có pt: y= 7x/3 -13/3
b) Gọi pt đt qua AC là y=cx+d. c= -5/3 (vì nó vuông góc với đường 3x-5y+13)
d= yA-c.xA= 3+5.(-2)/3= -1/3
Vậy pt đt qua AC là y= -5x/3 -1/3
c) Điểm C là giao điểm của dt BC và AC:
yC= 7xC/3 -13/3 và yC= -5xC/3 -1/3. Từ đó tính ra xC=1; yC=-2.
gọi pt đường cao đi qua C là y=mx+n thì m= -3 (vì nó vuông góc với đt x-3y+11=0.
n=yC-mxC= (-2)-(-3).1=1
Vậy pt đường thảng đi qua đuờng cao hạ từ c là y= -3x+1
Hòa tan 24,4g Na2CO3 va K2CO3 vào nước được dung dịch A.Them vao dung dich A 33,3g CaCl2 thay tao thanh 20g ket tua va dung dich B.Tinh phan tram ve khoi luong moi muoi trong hon hop ban dau
Áp dụng BĐT Côsi-Shaw ta có :
\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)
Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)
Ta sẽ có : \(\dfrac{9}{B}\)
Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .
Áp dụng BĐT Cô si , ta có :
\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )
Tương tự , ta có :
\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)
\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :
\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)
\(\Leftrightarrow4B\le24\)
\(\Leftrightarrow B\le6\)
Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1.\)
Sai thôi nha
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)
\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)
\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow A\ge\dfrac{3}{2}\)
\(\Rightarrow A_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1\)