Bài học cùng chủ đề
- Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Vị trí tương đối giữa hai đường thẳng (phần 1)
- Vị trí tương đối giữa hai đường thẳng (phần 2)
- Góc giữa hai đường thẳng
- Khoảng cách (phần 1)
- Khoảng cách (phần 2)
- Luyện tập tổng hợp
- Vị trí tương đối giữa hai đường thẳng
- Góc giữa hai đường thẳng
- Khoảng cách từ một điểm đến một đường thẳng
- Phiếu bài tập: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng SVIP
Xét vị trí tương đối của hai đường thẳng d1:x−3y+2=0 và d2:6x+2y−1=0.
Xét vị trí tương đối của hai đường thẳng d1:2x−y+1=0 và d2:−4x+4y−3=0.
Xét vị trí tương đối của hai đường thẳng d1:x−2y+2=0 và d2:{x=2+4ty=3+2t.
Xét vị trí tương đối của hai đường thẳng d1:{x=1+ty=2+2t và d2:{x=3t′y=6t′.
Tính số đo của góc giữa hai đường thẳng d1, d2 trong các trường hợp sau:
a) d1:x+2y−1=0 và d2:3x+y+2=0
(d1,d2)= ;
b) d1:7x−4y+3=0 và d2:8x+14y+4=0
(d1,d2)= ;
c) d1:{x=1−ty=3−3t và d2:6x+2y−3=0
(d1,d2)= .
(Kéo thả hoặc click vào để điền)
Tính khoảng cách giữa hai đường thẳng d1:7x+y−3=0 và d2:{x=−2+ty=2−7t.
Cho tam giác ABC có A(2;−1), B(2;−2) và C(0;−1). Tính độ dài đường cao AH của tam giác ABC.
Tam giác ABC có A(−1;1), B(1;3), C(1;−1). Trong các phát biểu sau, phát biểu nào đúng?