Nguyễn Huy Tú

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Huy Tú
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

\(A=\left|x-2022\right|+\left|2023-x\right|\ge\left|x-2022+2023-x\right|=1\)

Dấu ''='' xảy ra khi \(2022\le x\le2023\)

\(-\left(x^2-\dfrac{2.3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)+7=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)

Dấu ''='' xảy ra khi x = 3/2 

\(\sqrt{98};\sqrt{80};\sqrt{54};\sqrt{97};\sqrt{99}\)

\(\Rightarrow6\sqrt{3};4\sqrt{5};\sqrt{97};7\sqrt{2};3\sqrt{11}\)

\(\Rightarrow x+6=24\Leftrightarrow x=18\)

\(D=\dfrac{5\left(3x-1\right)\left(6x+1\right)}{\left(3x-1\right)^2}=\dfrac{5\left(18x^2-3x-1\right)}{9x^2-6x+1}=\dfrac{90x^2-15x-5}{9x^2-6x+1}\)

\(x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}+1=\dfrac{3}{2}\)

\(\left(\dfrac{7}{5}\right)^x=\left(\dfrac{7}{5}\right)^2\Rightarrow x=2\)