K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

Ta co n^2=n×n

Va ta co 

n×n+n+6 nên n ko chia het cho 5

Ban cho minh voi

4 tháng 10 2015

a)9.10n+18

=9.(10n+2)

=9.[1000....0000(n chữ số 0) +2]

=9.[1000....0002(n-1 chứ số 0)]

ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9

           +1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)

=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27

18 tháng 1 2018

Xét n=0 => 62n+1 + 5n+2  = 31chia hết 31

Xét n=1 => 62n+1 + 5n+2  = 341 chia hết 31

Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3  + 5k+3

Ta có 62k+1 + 5k+2  = 36k .6+5k .25 chia hết 31

<=> 62k+3  + 5k+3 = 36k .216+5k .125

Xét hiệu : 62k+3  + 5k+3 − 62k+1  − 5k+2  = 36k .216+5k .125−36k .6−5k .25

= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k  chia hết 36 - 5 = 31

=> 62n+3  + 5k+3  − 62k+1 − 5k+2  chia hết 31

. Mà 62k+1  + 5k+2  chia hết 31 nên 62k+3 + 5k+3  chia hết 31

Phép quy nạp được chứng minh hoàn toàn,ta có đpcm 

:D

18 tháng 1 2018

Ta có: \(6^2\equiv5\left(mod31\right)\)

\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)

\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)

Lại có: 5\(5\equiv5\left(mod31\right)\)

\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)

\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)

28 tháng 8 2016

giả sử n^2+n+6 chia hết cho5 thì ta có:

n(n+1)+2 chia hết cho 5

Má n(n+1)suy ra n(n+1)+2 chẵn

Suy ra n(n+1)+2có tận cùng là 0

Suy ra n(n+1) có tận cùng là 8

Má n(n+1)lá tích 2 số liên tiếp nên k tìm được n

Giả thuyết trên k hợp lý

Vậy...................

28 tháng 8 2016

minh hieu roi

18 tháng 9 2015

n2+n+6

= n(n+1)+6

= chẵn + chẵn

= chẵn -> ko chia hết cho 5

=> n2+n+6 ko chia hết cho 5

=> đpcm

6 tháng 4 2016

a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)

=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)

b, Gỉa sử n chia hết cho 3

=> n2+n+1 chia 3 dư 1.

Nếu n chia 3 dư 1

=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3

Nếu n chia 3 dư 2

=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.

Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5

=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9

=> n+ n+1 ko chia hết cho 15.

thấy sai thì góp ý nha