`1 / thực hiện phép tính 1 cách hợp lý
a, 123 . 456 + 123. 789 - 1245. 23
b, 29 : 162 + 815 : 318 - 1257 : 6255
2/ a, chứng tỏ rằng : ( 7n + 1 ) ( 7n + 2) chia hết cho 3 với mọi số tự nhiên n
b/ chứng tỏ rằng ko tồn tại các số tự nhiên x, y, z, sao cho :
( x + y ) ( y+ Z ) ( z + x ) + 2016 = 20172018
1/
a) \(123.456+123.789-1245.23\)
\(=123.\left(456+789\right)-1245.23\)
\(=123.1245-1245.23\)
\(=1245.\left(123-23\right)\)
\(=1245.100\)
\(=124500\)
b) \(2^9\div16^2+81^5\div3^{18}-125^7\div625^5\)
\(=2^9\div\left(2^4\right)^{^2}+\left(3^4\right)^{^5}\div3^{18}-\left(5^3\right)^{^7}\div\left(5^4\right)^{^5}\)
\(=2^9\div2^8+3^{20}\div3^{18}-5^{21}\div5^{20}\)
\(=2^1+3^2-5^1\)
\(=2+9-5\)
\(=6\)
2/ a) Ta có: 7n chia 3 dư 1 hoặc dư 2
Nếu 7^n chia 3 dư 1 => 7^n + 2 chia hết cho 3 => Tích chia hết cho 3
Nếu 7^n chia 3 dư 2 => 7^n + 1 chia hết cho 3 => Tích chia hết cho 3
Vậy (7^n + 1).(7^n + 2) chia hết cho 3
ĐK đúng: n thuộc N
b) Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y) . (y + z) . (z + x) \(⋮2\)
=> (x + y)(y + z)(z + x) + 2016 \(⋮2\) (vì 2016 \(⋮\) 2)
Mà 20172018 \(⋮̸\) 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài