Cho 3 só thực a,b,c thỏa mãn a+b+c=1. Chứng minh răng
\(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)
Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)
\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)
\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3.\)
\(P=\frac{\frac{1}{a}}{1+\frac{b}{a}.\frac{c}{a}}+\frac{\frac{1}{b}}{1+\frac{c}{b}.\frac{a}{b}}+\frac{\frac{1}{c}}{1+\frac{a}{c}.\frac{b}{c}}\)
Đặt \(\left(\frac{1}{a};\text{ }\frac{1}{b};\text{ }\frac{1}{c}\right)=\left(x;y;z\right)\)
Thì \(x+y+z=3\)
\(P=\frac{x}{1+\frac{z}{x}}+\frac{y}{1+\frac{x}{y}}+\frac{z}{1+\frac{y}{z}}=\frac{x^2}{x+z}+\frac{y^2}{y+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{x+z+y+x+z+y}=\frac{\left(x+y+z\right)^2}{2}=\frac{9}{2}.\)
bạn còn cách nào khác như biến đổi thẳng luôn trong vế trái thay vì đặt x,y ,z được không ? Cảm ơn nhiều !
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Dat A la bieu thuc cho truoc ve trai
tu gia thiet => a(b+c)=3-bc
ta co: 1+a^2(b+c)= 1+a.a.(b+c) = 1+a.(3-bc) = 1+3a-abc
cmtt ta co : 1+b^2(a+c)=1+b.b(a+c)=1+3b-abc
Va: 1+c^2(a+b)=1+3c-abc
Ap dung bdt Cosi cho 3 so ta co
ab+ac+bc >= 3.can bac 3(a^2.b^2.c^2)
=> 3>= 3.can bac 3(a^2.b^2.c^2)
=> a^2.b^2.c^2<=1
=> abc<=1
=> 1+3a-abc>=3a
cmtt 1+3b-abc>=3b
1+3c-abc>=3c
=> A<=1/3a+1/3b+1/3c=(bc+ac+ab)/3abc=1/abc
cho 2 số thực a , b phân biệt thỏa mãn a^2 +3a=b^2 +3b=2
c/m: a, a+b=-3 b,a^3+b^3=-45
Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)
Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.
Tham khảo
Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath
Ta có:
\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó Cauchy....
Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii
a,b,c có dương ko bn
đã bảo là 3 số thực thì có thể dương, có thể âm, có thể là 0, có thể là phân số...