Cho tam giác ABC vuông tai A. I là giao điểm các đường phân giác trong ABC. Chứng minh rằng \(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đừng đăng bài của cuộc thi bên mình nhé, nếu bạn muốn biết đáp án thì để hết vòng 1 mình sẽ làm
\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Rightarrow\hept{\begin{cases}a=b.k\\b=c.3k\\c=c.9k\end{cases}\Leftrightarrow abc=abc.27k^3.}\)
\(\Leftrightarrow k=\frac{1}{3}\Rightarrow\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c.\)
Bài hình do ngại, mình chụp ảnh ko đưa lên đây dc. nên thôi nhé .
Bài giải :
Gọi E,D,F lần lượt là hình chiếu của I trên các cạnh BC,AB,AC.
Vì I là giao điểm các đường phân giác trong tam giác ABC nên : ID = IE = IF = x
- Ta có : Tam giác ADI vuông tại D có góc DAI = \(45^o\)
⇒ Tam giác ADI vuông cân tại D .
hay AD = ID = x
- Xét hai tam giác vuông AID và tam giác vuông AIF có :
Tam giác vuông AID = Tam giác vuông AIF ( cạnh huyền-góc nhọn )
⇒AD = AF = x
Vậy ID = IE =IF = AD = AF = x
Xét hai tam giác vuông BEI và tam giác vuông BDI có :
Tam giác vuông BDI = tam giác vuông BEI ( cạnh huyền - góc nhọn)
nên BD = BE = y
- Tương tự ta có : tam giác vuông CIE = tam giác vuông CIF
nên CE = CF = z
Ta có :
\(CI^2=CE^2+IE^2=z^2+x^2\left(1\right)\)
Mà : \(\frac{\left(BC-AB\right)^2+AC^2}{2}=\frac{\left[\left(y+z\right)^2-\left(x+y\right)^2\right]+\left(x+z\right)^2}{2}\)
\(=\frac{\left(z-x\right)^2+\left(x+z\right)^2}{2}=\frac{2x^2+2z^2}{2}=x^2+z^2\left(2\right)\)
Từ (1) và (2) ta có \(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)
Hình thì bạn tự vẽ nhé
Kẻ ID, IE, IF lần lượt vuông với AB, BC, CE
- vì I là giao điểm 3 dường phân giác của tam giác nên ID = IE = IF = x
- ta có: \(\Delta ADI\) vuông tại D có \(\widehat{DAI}=45^0\) suy ra \(\Delta ADI\)vuông cân tại D
hay AD = ID = x
- chứng minh tương tự, ta dươc ID = IE = IF = AD = AF = x
- ta có: \(\Delta BDI=\Delta BEI\)(cạnh huyền - góc nhọn )
nên BD = BE = y
- chứng minh tương tự, ta có: CE = CF = z
Ta có: \(CI^2=CE^2+IE^2=z^2+x^2\) (1)
Lại có: \(\frac{\left(BC-AB\right)^2+AC^2}{2}=\frac{\left[\left(y+z\right)-\left(x+y\right)\right]^2+\left(x+z\right)^2}{2}\)
\(=\frac{\left(z-x\right)^2+\left(x+z\right)^2}{2}=\frac{z^2-2xz+x^2+x^2+2xz+z^2}{2}=\frac{2\left(x^2+z^2\right)}{2}=x^2+z^2\) (2)
So sánh (1) và (2) suy ra đpcm.