K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)

\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)

\(\frac{99}{100}=\frac{0,99x}{2009}\)

=>0,99x*100=2009*99

99x=2009*99

=>x=2009

Vậy x=2009

26 tháng 12 2015

\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)

8 tháng 4 2017

x=2009

12 tháng 4 2018

More images for 1−14 +14 −17 +...+197 −1100 =0,99·x2009 100100 −1100 =0,99x2009 99100 =0,99x2009 =>0,99x*100=2009*9999x=2009*99=>x=2009Vậy x=2009 Đúng 4 Sai 0 Diana Andrea đã chọn câu trả lời này.Đỗ Lê Tú Linh 26/12/2015 lúc 22:10 Báo cáo sai phạm

8 tháng 3 2016

\(\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\right)=\frac{0,33x}{2009}\)

\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)

\(\left(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

\(1-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{2009}\Rightarrow2009x99=0,33x\times100\)

198891:100:0,33=6027=x

25 tháng 1 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)

\(\Rightarrow100.0.33.x=99.2009\)

\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn

19 tháng 9 2017

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )

17 tháng 4 2018

⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009

⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009

19 tháng 3 2019

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Leftrightarrow2^x\left(1+2^1+2^2+2^2\right)=15.2^x\)

\(\Leftrightarrow15.2^x=480\)

\(\Leftrightarrow2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Leftrightarrow2^x=2^5\)

=> x = 5

30 tháng 7 2020

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}.\frac{99}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1.33}{1.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow33.x=66297\)

\(\Leftrightarrow x=22099\)

25 tháng 1 2017

mk đc thầy cho làm bài này rồi nên cảm thấy nó dễ mà

25 tháng 1 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Còn lại thì dễ rồi bạn nhé