Thu gọn biểu thức sau:
M= (2a-b+c)-(a-b-3c)+(-a-b)
Làm ơn giúp mk với mk cần gấp ai nhanh mk sẽ tk cho nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b\)
b) \(\left(a+b-c\right)+\left(a-b\right)-\left(a-b-c\right)=a+b-c+a-b-a+b+c\)
\(=a+b\)
c) -(a-b-c)+(-a+b-c)-(-a-b+c) = -a+b+c-a+b-c+a+b-c = -a+3b-c
Vân dụng bất đẳng thức \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{\left(a+3b\right)+\left(b+2c+a\right)}=\frac{2}{a+2b+c}\)
\(\Rightarrow\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{4}{\left(b+3c\right)+\left(c+2b+a\right)}=\frac{2}{b+2c+a}\)
\(\Rightarrow\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{\left(c+3a\right)+\left(a+2b+c\right)}=\frac{2}{c+2a+b}\)
Cộng tất cả các vế bất đẳng thức trên và rút gọn ta có bất đẳng thức \(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
Đẳng thức xảy ra khi: \(\hept{\begin{cases}a+3b=b+2c+a\\b+3c=c+2a+b\Leftrightarrow a=b=c\\c+3a=a+2b+c\end{cases}}\)
Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Áp dụng vào bài toán ta có :
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{4}{b+3c+2a+b+c}=\frac{4}{2a+2b+4c}=\frac{2}{a+b+2c}\)
\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{c+3a+a+2b+c}=\frac{4}{4a+2b+2c}=\frac{2}{2a+b+c}\)
Cộng vế theo vế của bất đẳng thức ta được
\(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\ge\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
=> ĐPCM
a) -a -(b-a-c)
= -a -b+a+c
=(-a+a) +(c-b)
=c-b
b) -(a-c)-(a-b+c)
= -(a-c)-a+b-c
=-(a-c)-(a-c)+b
tự nghĩa nhe buồn ngủ rồi nhớ k đấy hứa rồi
a) -a - (b-a-c) = - a - b + a + c
= (a-a) + (c-b)
= c-b
b) -(a-c) - (a-b+c)
= - a + c - a + b - c
= -(a+a) + b + (c-c)
= - 2a + b
\(\frac{4}{3}B=-1+\frac{3}{4}-\left(\frac{3}{4}\right)^2+...+\left(\frac{3}{4}\right)^{99}\)
\(B=-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...+\left(\frac{3}{4}\right)^{100}\)
\(\Rightarrow\)\(\frac{7}{3}B=-1+\left(\frac{3}{4}\right)^{100}\Rightarrow B=\frac{\left(\frac{3}{4}\right)^{100}-1}{\frac{7}{3}}=\frac{3\left[\left(\frac{3}{4}\right)^{100}-1\right]}{7}\)
Như vầy đủ gọn chưa bạn?
Đường ....... sai rồi :v
Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra <=> \(a=b=c=1\)
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
M= (2a-b+c)-(a-b-3c)+(-a+b)
= 2a+b+c-a+b+3c-a+b
= 3b+4c
\(M=\left(2a-b+c\right)-\left(a-b-3c\right)+\left(-a-b\right)\)
\(M=2a-b+c-a+b+3c-a-b\)
\(M=-b+4c\)