Cho 3 số a,b,c thỏa mãn abc=2010. Tính giá trị biểu thức:
M= \(\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: \(\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
\(=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}\)
\(=1\)
Vậy \(\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
Câu 2:
Đặt \(B=4^{2009}+4^{2008}+...+4^2+5\)
\(\Rightarrow B=1+4+4^2+...+4^{2009}\)
\(\Rightarrow4B=4+4^2+4^3+...+4^{2010}\)
\(\Rightarrow4B-B=4^{2010}-1\)
\(\Rightarrow3B=4^{2010}-1\)
\(\Rightarrow B=\frac{4^{2010}-1}{3}\)
Thay vào A ta có:
\(A=75.\frac{4^{2010}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2010}-1\right)+25\)
\(\Rightarrow A=25\left(4^{2010}-1+1\right)\)
\(\Rightarrow A=25.4^{2010}\)
Vậy \(A=25.4^{2010}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
Theo đề ta có
\(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=\frac{a-b}{2009-2010}=\frac{b-c}{2010-2011}=\frac{a-c}{2009-2011}\)
=> \(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)
\(=>\hept{\begin{cases}a-b=b-c\\-2\left(a-b\right)=-1\left(a-c\right)=c-a\end{cases}}\)
=> M=4(a-b)(b-c)-(c-a)2=4(a-b)(a-b)-[-2(a-b)]2
=4(a-b)2-4(a-b)2
=0
Vậy M=0
Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
Thế: abc = 2010 ta được:
\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)
\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)
Vậy \(M=1\)