Cho tam giac ABC can tai A.Tren canh AB lay diem D sao cho AD=BC.Qua D ve 1 duong thang song song voi BC,tren do lay DE=AB(E thuoc nua mat phang chua C,bo la duong thang AB). a) chung minh tam giac EDA=tam giac ABC; b) tinh so do goc DAE?;c) chung minh tam giac ACE deu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHDB có
AH//BD
AH=BD
DO đó: AHDB là hình bình hành
Suy ra: AB//DH
b: \(\widehat{BAH}=\widehat{ACB}=35^0\)
Vì AB//CD nên ABC=KCD (so le trong)
Xét tam giác AHB và tam giác DKC:
AB=CD(gt)
ABC=KCD(cmt)
CKD=AHB(=90 độ)
Do đó tam giác AHB=tam giác DKC(cạnh huyền, góc nhọn)
=> AH=DK(cặp cạnh tương ứng)
b/ Xét tam giác AOB và tam giác DOC:
AB=CD (gt)
OC=OB(gt)
OCD=ABO(cmt)
Do đó, tam giác AOB=tam giác DOC(c.g.c)
=> AOB=COD(cặp góc tương ứng)
Mà AOB+AOC=180 độ (Kề bù)
=> COD+AOC=180 độ
Góc AOD=180 độ
=> A;O;D thẳng hàng
c/ Chứng minh tam giác AOC=Tam giác DOB
Qua E kẻ đường thẳng vuông góc với đoạn AD, cắt AB tại K.
EK vuông góc AD. Mà \(\Delta\)DAB vuông cân tại D => \(\Delta\)AEK vuông cân tại E
^BEK+^KEF=^BEF=900 (1)
^FEA+^KEF=^AEK=900 (2)
Từ (1) và (2) => ^BEK=^FEA (Cùng phụ với ^KEF)
\(\Delta\)AEK vuông cân tại E => EK=EA và ^EAK=^EKA=450.
^EKB kề bù với ^EKA => ^EKB=1800-^EKA=1800-450=1350 (3)
^EAF=^EAK+^KAF=450+900=1350 (4)
Từ (3) và (4) => ^EKB=^EAF=1350
Xét \(\Delta\)BEK và \(\Delta\)FEA có:
^BEK=^FEA
EK=EA (cmt) => \(\Delta\)BEK=\(\Delta\)FEA (g.c.g)
^EKB=^EAF
=> BE=FE (2 cạnh tương ứng) hay EF=EB (đpcm)
k cho mình!
Trên canh AC lấy điểm K sao cho BD=CK
Vì tam giác ABC cân tại A nên AB=AC
Mà BD=CK => AB-BD=AC-CK
=> AD=AK
Lại có : góc A= 90 độ
=> tam giác DAK vuông cân tại A
=> DKA= (180 độ-90độ):2=45 độ
=> góc DKC= 180 độ-góc DKA= 180 độ - 45 độ= 135 độ.
Ta có: góc BDE + góc ADC= 90 độ
và góc ACD+góc ADC = 90 độ
=> góc BDE= góc ACD
Xét tam giác KDC và tam giác BED có:
góc DKC=góc DBE=135 độ
KC=BD
góc KCD=góc BED
=> tam giác KDC=tam giác BED (g.c.g)
=> DC=ED
=> tam giác DEC vuông cân tại D
a ) ( tg là tam giác nha )
Xét tgABC và tgDCB ,có :
AB = CD ( gt )
BC là cạnh chung
góc B1 = góc C2 ( 2 góc so le trong của AB // CD )
Do đó : tgABC = tgDCB ( c - g - c )
b ) Ta có : tgABC = tgDCB ( cmt )
=> góc C1 = gócB2 ( 2 góc tương ứng )
=> AC//BD ( vì gócC1 và gócB2 là 2 góc so le trong của AC và BD )
c ) sai đề rồi
d ) Ta có : AB // CD ( gt )
và : AB = CD ( gt )
do đó : tứ giác ABCD là hinh bình hành ( có 2 cặp cạnh đối song song và bằng nhau ) ( 1 )
mà : I là trung điểm của BC ( 2 )
: AD và BC cũng chính là 2 đường chéo của hình bình hành ABCD ( 3 )
Từ ( 1 ) (2 ) và ( 3 ) suy ra : I là trung điểm cùa AD ( vì trong hình bình hành trung điểm của một đường chéo chính là trung điểm của đường chéo còn lại )