K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

đếch nói đấy làm sao làm gì được nhau

11 tháng 5 2021

Giúp

 

28 tháng 3 2018

Mình làm ý đầu tiên

Hình bạn tự vẽ

Xét \(\Delta AGB\) có:

\(\left\{{}\begin{matrix}GE=EA\\GF=FB\end{matrix}\right.\)

\(\Rightarrow EF//AB\)

\(\Rightarrow\dfrac{EF}{AB}=\dfrac{1}{2}\)

CMTT\(\Rightarrow\dfrac{EH}{AC}=\dfrac{1}{2};\dfrac{FH}{BC}=\dfrac{1}{2}\)

Xét \(\Delta EFH\)\(\Delta ABC\) có:

\(\dfrac{EF}{AB}=\dfrac{EH}{AC}=\dfrac{FH}{BC}\)

\(\Rightarrow\Delta EFH\sim\Delta ABC\left(c.c.c\right)\)

a: OM//AH

ON//BH

MN//AB

=>góc BAH=góc OMN và góc ABH=góc ONM

=>ΔABH đồng dạng vơi ΔMNO

b: G là trọng tâm của ΔABC

=>GM/GA=1/2

ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2

=>OM/AH=MG/AG

=>ΔHAG đồng dạng với ΔOMG

c: ΔHAG đồng dạng với ΔOMG

=>góc AGH=góc OGM và GH/GO=GA/GM=2

=>H,G,O thẳng hàng và GH=2GO

15 tháng 8 2020

a) Vì E, D lần lượt là trung điểm của AB, AC (đề bài)

=> ED là đường trung bình của tam giác ABC (định nghĩa đường trung bình của tam giác)

=> ED // BC; ED = ½ BC(tính chất đường trung bình của tam giác) 

Vì O là giao điểm của 3 đường trung trực trong tam giác ABC (đề bài); E, D lần lượt là trung điểm của AB, AC (đề bài)  

=> OD vuông góc với AC; OE vuông góc với AB

Vì H là trực tâm của tam giác ABC (đề bài) => BH vuông góc với AC; CH vuông góc với AB

Mà OD vuông góc với AC; OE vuông góc với AB (cmt)

=> BH // OD; CH // OE (từ vuông góc đến // )

Vì BH // OD; ED // BC (Cmt) => Góc ODE = góc HBC  

Vì CH // OE, ED // BC (cmt) => góc ODE = góc HCB

Xét tam giác OED và tam giác HCB có: 

+)góc ODE = góc HCB

+) Góc ODE = góc HBC 

=> Tam giác OED ~ tam giác HCB (g.g)(đpcm)

=>  OE/CH = OD/BH = ED/BC = ½ 

b) Ta có G là trọng tâm của tam giác ABC (đề bài)

=> GD = ½ BG (Tính chất trọng tâm của tam giác)

Ta có BH // OD (Cmt) => Góc BHG = góc GOD (2 góc slt)

Xét tam giác GOD và tam giác GHB có: 

+) GD = ½ BG

+) Góc GOD = góc BGH(cmt)

+) OD/BH = ½

=> Tam giác GOD ~ tam giác GHB 

=> Góc OGD = góc HGB; OG/HG = OD/BH =  ½  (tính chất 2 tam giác đồng dạng)

c) Ta có góc OGD = góc HGB (cmt); B, G, D thẳng hàng 

=> H, G, O thẳng hàng vì H và O nằm ở 2 mặt phẳng khác nhau, bờ là BD

Ta có OG/HG = ½ (cmt) => GH = 2OG

Good luck!