Cho tam giác ABC cân tại A, kẻ AH\(\perp\)BC (H\(\in\) BC)
a) Chứng minh \(\widehat{BAH}\)= \(\widehat{CAH}\)
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC
c) Kẻ EH\(\perp\)AB, HD\(\perp\)AC. Chứng minh AE = AD
d) Chứng minh ED // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề
a) Xét \(\Delta ABH;\Delta ACH\) có :
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{ABH}=\widehat{ACH}\) (tam giác ABC cân tại A)
\(AH:chung\)
=> \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
b) Sửa lại chút nhé : cho AH = 3cm, BC = 8cm. Tính AC (có gì không đúng thì bạn chia sẻ nhé)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AH\) là đường cao đồng thời là tia phân giác trong \(\Delta ABC\)
=> AH cũng là đường trung trực trong \(\Delta ABC\)
=> \(BH=HC\)(tính chất đường trung trực)
Nên : \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta AHB\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHB\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2\) (Định lí PYTAGO)
=> \(AB^2=4^2+3^2=25\)
=> \(AB=\sqrt{25}=5\left(cm\right)\)
Mà có : \(AB=AC\) (gt)
=> \(AC=5cm\left(đct\right)\)
c) Xét \(\Delta AEH;\Delta ADH\) có :
\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)
\(AH:chung\)
\(\widehat{AEH}=\widehat{ADH}\left(=90^o\right)\)
=> \(\Delta AEH=\Delta ADH\) (cạnh huyền - góc nhọn)
=> \(AE=AD\) ( 2 cạnh tương ứng)
d) Xét \(\Delta ADE\) có :
\(AD=AE\left(cmt\right)\)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{AED}=\widehat{ADE}=\dfrac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{BAC}}{2}\right)\)
Mà ta thấy : 2 góc này ở vị trí đồng vị
=> \(\text{ED // BC }\left(đpcm\right)\)
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).
c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\widehat{DAH}=\widehat{EAH}.\)
=> \(\Delta HDE\) cân tại \(H\left(đpcm\right).\)
Chúc bạn học tốt!
a, ta có tam giác Abc có AH vuông góc với BC ,AB = 5cm ,AC = 5cm suy ra HB= HC , BAC=CAH b, có HB+HC=BC suy ra BC : 2 = 4 hay 8:4 =2 nên HB=HC=4cm Xét tam giác AHB vuông tại H có AB^2 = AH^2 + HB^2 suy ra AH^2 =AB^2 -HB^2 hay : AH^2 =5^2 -4^2 AH^2 = 25-16 AH^2 = 9 suy ra AH = 9 cm c,xét tam giacsHDE có HD vuông góc với AB HE vuông góc với AC suy ra HDE là tam giác cân CHÚC BẠN HỌC TỐT
a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(ABH\) và \(ACH\) có:
\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
Cạnh AH chung
=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - cạnh góc vuông).
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).
b) Theo câu a) ta có \(\Delta ABH=\Delta ACH.\)
=> \(BH=CH\) (2 cạnh tương ứng).
=> H là trung điểm của \(BC.\)
=> \(BH=CH=\frac{1}{2}BC\) (tính chất trung điểm).
=> \(BH=CH=\frac{1}{2}.8=\frac{8}{2}=4\left(cm\right).\)
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+CH^2\) (định lí Py - ta - go).
=> \(AC^2=3^2+4^2\)
=> \(AC^2=9+16\)
=> \(AC^2=25\)
=> \(AC=5\left(cm\right)\) (vì \(AC>0\)).
c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\widehat{EAH}=\widehat{DAH}.\)
Xét 2 \(\Delta\) vuông \(AEH\) và \(ADH\) có:
\(\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\)
Cạnh AH chung
\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)
=> \(\Delta AEH=\Delta ADH\) (cạnh huyền - góc nhọn).
=> \(AE=AD\) (2 cạnh tương ứng).
d) Xét \(\Delta ADE\) có:
\(AE=AD\left(cmt\right)\)
=> \(\Delta ADE\) cân tại \(A.\)
=> \(\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân).
=> \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\) (1).
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}.\)
Mà 2 góc này nằm ở vị trí đồng vị.
=> \(ED\) // \(BC\left(đpcm\right).\)
Chúc bạn học tốt!
a) Xét ΔABH;ΔACH có :
AB=AC (tam giác ABC cân tại A)
ABHˆ=ACHˆ (tam giác ABC cân tại A)
AH:chung
=> ΔABH=ΔACH(c.g.c)
=> BAHˆ=CAHˆ (2 góc tương ứng)
b)
Xét ΔABC cân tại A (gt) có :
AH là đường cao đồng thời là tia phân giác trong ΔABC
=> AH cũng là đường trung trực trong ΔABC
=> BH=HC(tính chất đường trung trực)
Nên : BH=HC=12BC=12.8=4(cm)
Xét ΔAHB có :
AHB^=90o(AH⊥BC−gt)
=> ΔAHB vuông tại H
Ta có : AB2=AH2+BH2(Định lí PYTAGO)
=> AB2=42+32=25
=> AB=25−−√=5(cm)AB=25=5(cm)
Mà có : AB=AC (gt)
=> AC=5cm(đct)
c) Xét ΔAEH;ΔADH có :
EAHˆ=DAHˆ(cmt)
AH:chung
AEHˆ=ADHˆ(=90o)
=> ΔAEH=ΔADH (cạnh huyền - góc nhọn)
=> AE=AD( 2 cạnh tương ứng)
d) Xét ΔADEcó :
AD=AE(cmt)
=> ΔADEcân tại A
Ta có : AEDˆ=ADEˆ=180o−BACˆ2(1)
Xét ΔABC cân tại A (gt) có :
ABCˆ=ACBˆ=180o−BACˆ2(2)
Từ (1) và (2) => AEDˆ=ABCˆ(=180O−BACˆ2)
Mà ta thấy : 2 góc này ở vị trí đồng vị
=> ED // BC (đpcm)
1. a) Vì \(\Delta ABC\) cân tại A có AH là đường cao ( AH \(\perp\) BC )
\(\Rightarrow\) Ah là trung tuyến ;AH là phân giác
\(\Rightarrow BH=CH;\widehat{BAH}=\widehat{CAH}\)
b) Có \(BH=CH=\frac{BC}{2}=\frac{8}{2}=4cm\)
Xét \(\Delta ABH\) vuông tại H
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3cm\)
c) Xét \(\Delta ADH\) và \(\Delta AEH\)có :
\(\widehat{DAH}=\widehat{EAH}\) (\(\Delta ABC\) cân tại A)
\(AH:chung\)(cm câu a)
\(\widehat{ADH}=\widehat{AEH}=90^o\)
=>\(\Delta ADH\) = \(\Delta AEH\)(cạnh huyền -góc nhọn)
=> AD = AE (2 cạnh tương ứng)
=> \(\Delta ADE\) cân tại A.
Có \(\Delta ADE\) cân tại A. \(\Rightarrow\widehat{ADE}=\widehat{AED}=180^o-\widehat{DAE}\) (1)
\(\Delta ABC\) cân tại A. \(\Rightarrow\widehat{ABC}=\widehat{ACB}=180^o-\widehat{BAC}\) (2)
từ ( 1 ) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\) mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow DE//BC\)
Xét \(\Delta ADH\) và Δ A E H có : \(\widehat{DAH}=\widehat{EAH}\) (\(\Delta ABC\) cân tại A) \(AH:chung\)(cm câu a) \(\widehat{ADH}=\widehat{AEH}=90^o\)