Tìm STN a nhỏ nhất sao cho
a:3;a:5:a:7 có số dư lần lượt bằng 2,3,4
GIÚP MIK VỚI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!AI ĐÚNG VÀ NHANH NHẤT MIK TICK CHO <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+8 thì chia hết cho 5 và 11
Để a nhỏ nhất => a+8=BSCNN(5;11)=55=> a=47
Ta có
a: 11 dư 5 => a-5 chia hết cho 11 => a-5+11 chia hết cho 11 => a+6 chia hết cho 11
á:13 dư 8 => a-8 chia hết cho 13 => a-8+13 chia hết cho 13 => a+6 chia hết cho 13
=> a+6 \(\in\)ƯC(11;13)
=> a+6 \(\in\) Ư(143)
=> a+6 = 1;11;13;143
=> a= 5;7;137 (vì a là số tự nhiên )
Vì a là số nhỏ nhất có 3 chữ số
=> a= 137
Vậy số cần tìm là 137
Ta có
a: 11 dư 5 => a-5 chia hết cho 11 => a-5+11 chia hết cho 11 => a+6 chia hết cho 11
á:13 dư 8 => a-8 chia hết cho 13 => a-8+13 chia hết cho 13 => a+6 chia hết cho 13
=> a+6 ∈ƯC(11;13)
=> a+6 ∈ Ư(143)
=> a+6 = 1;11;13;143
=> a= 5;7;137 (vì a là số tự nhiên )
Vì a là số nhỏ nhất có 3 chữ số
=> a= 137
Vậy số cần tìm là 137
Bài giải
Gọi số cần tìm là a
Ta có :
a chia 3 dư 2
\(\Rightarrow\)a-2 chia hết cho 3
\(\Rightarrow\)2(a-2) chia hết cho 3
\(\Rightarrow\)2a-4 chia hết cho 3
\(\Rightarrow\)2a-4+3 chia hết cho 3
\(\Rightarrow\)2a-1 chia hết cho a (1)
Ta có : a chia 5 dư 3
\(\Rightarrow\)a-3 chia hết cho 5
\(\Rightarrow\)2(a-3) chia hết cho 5
\(\Rightarrow\)2a-6 chia hết cho 5
\(\Rightarrow\)2a-6+5 chia hết cho 5
\(\Rightarrow\)2a-1 chia hết cho 5 (2)
Ta có a chia 7 dư 4
\(\Rightarrow\)a-4 chia hết cho 7
\(\Rightarrow\) 2 (a-4) chia hết cho 7
\(\Rightarrow\)2a-8 chia hết cho 7
\(\Rightarrow\)2a-8+7 chia hết cho 7
\(\Rightarrow\)2a-1 chia hết cho 7 (3)
Từ 1 ;2 và 3 ta có :
2a-1 chia hết cho 3;5;7
Mà a nhỏ nhất
\(\Rightarrow\)2a-1 thuộc BCNN(3;5;7)=105
\(\Rightarrow\)2a-1=105
\(\Rightarrow\)2a=106
\(\Rightarrow\)a=53
Vậy số cần tìm là 53
+ Vì a chia cho 3 dư 2 => a = 3k + 2 => 2a = 2(3k +2) = 6k + 4 = 6k + 3 + 1 = 3(2k+1) + 1 => 2a - 1\(⋮\)3 (1)
+ Vì a chia cho 5 dư 3 => a = 3h + 3 => 2a = 2(3h + 3) = 6h + 6 = 6h + 5 + 1 = 3(2h + 1) + 1 => 2a - 1 \(⋮\)5 (2)
+ Vì a chia cho 7 dư 4 => a = 3q + 4 => 2a = 2(3q + 4) = 6q + 8 = 6q + 7 + 1 = 3(2n + 1) + 1 => 2a - 1 \(⋮\)7 (3)
Từ (1) ; (2) ; (3) => 2a - 1 \(\in\)BC(3,5,7) , Mà a là nhỏ nhất => 2a - 1 là BCNN(3,5,7)
3 = 3 ; 5 = 5 ; 7 = 7
=> BCNN (3,5,7) = 3.5.7 = 105
=> 2a - 1 = 105
=> 2a = 105 + 1
=> 2a = 106
=> a = 106 : 2
=> a = 53
Ta có: a chia cho 2 dư 1 => a - 1 ⋮2
a chia cho 3 dư 1 => a - 1 ⋮3
=> a - 1 ⋮6 => a -1 + 6.2 ⋮ 6 => a +11 ⋮ 6 (1)
Ta có: a chia 5 dư 4 => a - 4 ⋮5 => a - 4 + 5.3 ⋮5 => a + 11 ⋮5 (2)
Ta có: a chia 7 dư 3 => a - 3 ⋮7 => a - 3 + 7.2 ⋮7 => a + 11 ⋮7 (3)
Từ (1) ; (2) ; (3) => a +11 ∈∈BC ( 6; 5; 7 )
Có: BCNN ( 6; 5; 7 ) = 210
=> a + 11 ∈ BC ( 6; 5; 7 )
=> a ∈ { 199; 409 ;....}
Mà a là số tự nhiên nhỏ nhất nên a = 199.