K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

\(S_{xq}=\dfrac{4.8}{2}.5=80\left(cm^2\right)\\ S_{tp}=80+8^2=144\left(cm^2\right)\\ V=\dfrac{1}{3}.8^2.3=64\left(cm^3\right)\)

19 tháng 5 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

23 tháng 9 2019

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

8 tháng 11 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

11 tháng 1 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )

Do đó:

+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).

+ Diện tích toàn phần của hình chóp đều là

Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )

+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )

13 tháng 1 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

22 tháng 6 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)