K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Đáp án C

17 tháng 3 2019

14 tháng 2 2019

Chọn A.

Xếp 12 học sinh thành 1 dãy có: 12! Cách sắp xếp.

Chọn 2 bạn nữ và sắp xếp 2 bạn đứng đầu hàng và cuối hàng có:  2 . C 7 2 cách.

Sắp xếp 10 bạn còn lại có: 10! Cách.

Do đó có:  2 C 7 2 . 10 ! cách sắp xếp 12 học sinh  sao cho người đứng đầu hàng và cuối hàng đều là nữ.

Xác suất cần tìm là:  P = 2 . C 7 2 . 10 ! 12 ! = 7 22

24 tháng 12 2019

Chọn D

Số phần tử của không gian mẫu: 

Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.

Ta tính n() như sau:

Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:

- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.

- Mỗi cách như vậy có  cách đổi chỗ.

 

- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.

Do nam nữ không ngồi đối diện nên:

+ Vị trí 5 và 6 đều có 3 cách.

+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.

+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.

 

Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864

NV
22 tháng 12 2022

Xếp Phúc Đức cạnh nhau có \(2!\) cách

Xếp 4 học sinh nữ có \(4!\) cách

4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách

\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn

23 tháng 6 2017

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

3 tháng 12 2017

a ) 6 chia hết cho n - 2

b) n+11 chia hết cho n+1

c) 5.n chia het cho n-3

5 tháng 12 2017

sao ko ai trả lời thế giúp mình với

a: Coi 3 bạn nữ như 1 người

Số cách xếp là:

\(8!\cdot3!\)(cách)

b: Số cách xếp là:

\(10!-8!\cdot3!\left(cách\right)\)