Tìm những cặp số nguyên x,y thỏa mãn
5x^2+8y^2=20412
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+8y^2=20412\)
Vì \(8y^2⋮2\)và \(20412⋮2\)\(\rightarrow5x^2⋮2\rightarrow x^2⋮2\rightarrow x⋮2.\)
Đặt \(x=2k\left(k\in Z\right)\), ta có:
\(5\times4k^2+8y^2=20412\)
\(\leftrightarrow5k^2+2y^2=5103\)
Vì \(5103\)lẻ và \(2y^2\)chẵn nên \(5k^2\)lẻ \(\rightarrow k\)lẻ.
+) Nếu \(y\) chẵn thì \(2y^2⋮4\)nên \(5103\)và \(5k^2\)có cùng số dư khi chia cho\(4\).
Ta thấy \(5103\div4\)dư \(3\)thì \(5k^2\div4\)dư \(3\)\(\rightarrow k^2\div4\) dư \(3\).
Vô lý, một số chính phương chia cho \(4\) chỉ có thể dư \(0\)hoặc\(1\).
+) Nếu\(y\)lẻ thì \(y^2\)chỉ có tận cùng là \(1,5,9\)nên \(2y^2\)có tận cùng là \(2,0,8\)
mà \(5k^2\)có tận cùng là 5 \(\rightarrow\)\(y^2\)có tận cùng là \(9\)
\(\rightarrow y\)có tận cùng là\(3,7\)
Thử bằng máy tính cầm tay với các giá trị của \(y=3,13,23,33,43,7,17,27,37,47\)ta tìm được \(y=27\)thỏa mãn
\(\rightarrow k=27\rightarrow x=54\)
Vậy phương trình có nghiệm nghuyên là \(\left(x;y\right)=\left(54;27\right)\)
Ta có: y2=\(\frac{\text{20412−5x^2}}{8}\)
Để y nguyên thì \(\frac{\text{20412−5x^2}}{8}\) nguyên => 20412−5x2⋮8
Suy ra 20412 và 5x2 có cùng số dư khi chia cho 8
Mặt khác 20412 chia 8 dư 4
Suy ra 5x2 phải chia 8 dư 4
Ta lại có x2 chia 8 dư 0;1;4 nên 5x2 chia 8 dư 0;5
Vậy không có cặp số nguyên (x;y) thỏa mãn đề bài
\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)
TH1 : \(4y^2=0\)
Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.
=> Không có số nguyên x nào thỏa mãn.
TH2 : \(4y^2>0\)
Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)
Mà y nguyên
=> \(4y^{2}=4\)
=> y ∈ {1 ; -1}
Với y = 1
=> x + 3 = 1
=> x = -2 (tm)Với y = -1
=> x - 1 = 1
=> x = 2 (tm)Vậy..
từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x
Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được
\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
*Trường hợp y=-1
\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Ta có: \(9x^2-8y^2=15⋮3\)
=> \(8y^2⋮3\)=> \(y^2⋮3\)=> \(y⋮3\)
Đặt y = 3 t ( t là số nguyên )
ta có: \(9x^2-8.9t^2=15\)
=> \(15=9x^2-8.9t^2⋮9\) vô lí
Vậy không tồn tại cặp số nguyên x; y.
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)