Hình vuông ABCD cạnh bằng a. Trên BC lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho BM=DN. Vẽ AH vuông với NM (H thuộc NM), AH cắt DC ở E. Gọi G là giao điểm của MN với AD.
a/ CM tam giac NAM vuông cân và D,H,B thẳng hàng
b/ Tính chu vi tam giác EMC theo a.
c/ Gọi I là giao điểm của BD với AM. Gọi K là giao của EG với AN. CM AIEK là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác NAM chỉ có thể cân thôi ko vuông cân dc,D,H,B đâu có thẳng hàng đâu ta
Mình sẽ giải ý đầu của câu a à mà bạn tự vẽ hình nha
ý đầu :
Xét \(\Delta\) ABM và \(\Delta\) ADN có:
BM = DN (gt)
góc ABC = góc ADN = 90 độ ( góc ADN kề bù với góc ADE ( E\(\in\)DC)
AB = AD ( ABCD là hình vuông)
=> \(\Delta\) ABM = \(\Delta\) ADN ( c-g-c)
=> AM = AN ( hai cạnh tương ứng )
=> \(\Delta\) NAM cân tại A
Xét \(\Delta\) ANH và \(\Delta\) AMH có:
AM = AN (cmt)
AH cạnh chung
góc AHN = góc AHM = 90 độ
=> \(\Delta\) AHN = \(\Delta\)AHM ( cạnh huyền - cạnh góc vuông)
=> HN = HM ( hai cạnh tương ứng )
Xét \(\Delta\) cân NAM có:
AH vừa là đường cao vừa là đường trung tuyến
=> \(\Delta\) NAM vuông cân tại A.