Tính tổng sau:D=9 / 10 - 1 / 90 - 1 / 72 - 1 / 56 - ... -1 / 6 - 1 / 2
Giúp mk nhé!Cảm ơn các bạn nhiều nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-5+9-13+...-89+93
<=> 1-5+9-13+...+81-85-89+93
= (1-5)+(9-13)+...+(81-85)-89+93
= (-4)+(-4)+...+(-4)-89+93
=> (-4).11-182
= (-44)-182
= -226
1-5+9-13+...-89+93
<=> 1-5+9-13+...+81-85-89+93
= (1-5)+(9-13)+...+(81-85)-89+93
= (-4)+(-4)+...+(-4)-89+93
=> (-4).11-182
= (-44)-182
= -226
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130
A=1/30 + 1/42 + 1/56 + 1/72 + ... + 1/210
A=1/5.6 + 1/6.7 +1/7.8 + 1/8.9 + ... + 1/14.15
A=1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 +...+ 1/14 - 1/15
A=1/5-1/15
A=2/15
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
=\(1-\frac{1}{10}=\frac{9}{10}\)
k cho mk nha
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}\)
\(\frac{9}{10}\)
\(D=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=\frac{9}{10}-\)\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(=\frac{9}{10}-1+\frac{1}{10}\)\(=0\)