choM=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với \(a,b,c\)dương CMR:M ko phải là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
Gia su : a/a+b > a/a+b+c (a,b,c thuoc N*)
b/b+c > b/b+c+a
c/a+c > c/c+a+b
=> P > 1 (1)
Mai khac : a/b+c < 1 => a/a+b < a+c/a+b+c (a,b,c thuoc N*)
b/b+c < b+a/b+c+a
c/c+a < c+b/c+a+b
=> P < 2 (2)
Tu (1) va (2) => 1<P<2
=> P ko phai la so nguyen.
*** k mk nha! >_<
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}
Gọi số dư của a và b khi chia m là n
Ta có: a=m*k+n
b=m*h+n
=>a-b=m*k+n -(m*h+n)
=m*k+n-m*h-n
=(m*k-m*h)+(n-n)
=m(k-h) luôn chia hết m
Đpcm
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1);(2) => 1 < M < 2 => đpcm
thêm đk : a,b,c > 0
Ta có :
\(\frac{a}{a+b}< 1\)\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)( 1 )
\(\frac{b}{b+c}< 1\)\(\Rightarrow\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)( 2 )
\(\frac{c}{c+a}< 1\)\(\Rightarrow\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{b+c}{a+b+c}\)( 3 )
cộng ( 1 ), ( 2 ) và ( 3 ) ta được :
\(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy M không phải là số nguyên
Có : a/a+b > 0 => a/a+b > a/a+b+c
Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c
=> M > a+b+c/a+b+c = 1 (1)
Lại có : a < a+b => a/a+b < 1 => 0 < a/a+b < 1 => a/a+b < a+c/a+b+c
Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c
=> M < a+c+b+a+c+b/a+b+c = 2 (2)
Từ (1) và (2) => 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha