Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn , thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị , ta vẫn được một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là:1000a+100b+10c+d(a;b;c;d nguyên dương và ≤9≤9
Có:1000a+100b+10c+d=x2
Tiếp tục có: 1000(a+1)+100(b+3)+10(c+5)+d+3=y2(x;y nguyên dương;32≤x;y≤≤99)
<=>x2+1353=y2<=>(y-x)(y+x)=1353=3.11.41
Tới đây ta giải pt tích rồi tìm ra (x;y) thoả mãn là (56;67)=>số cần tìm là 3136
Đặt abcd +k^2 -------
(a+1)(b+3)(c+5)(d+3)=m^2=>abcd +1353=m^2
Nên m^2-k^2=1353
=>(m+k)(m-k)=1353=123.11=41.33(vì k+m<200)
Đến đây làm như nghiệm nguyên để tinh m,k
Kết quả cuối cùng là 3136
Gọi là số phải tìm a, b, c, d N
Ta có:
Do đó: m2–k2 = 1353
(m+k)(m–k) = 123.11= 41. 33 ( k+m < 200 )
m+k = 123 m+k = 41
m–k = 11 m–k = 33
m = 67 m = 37
k = 56 k = 4
Kết luận đúng = 3136
Gọi số chính phương cần tìm là abcd=n2(n thuộc N)
Ta có: n+1 b+3 c+5 d+3 = k2(k thuộc N; k>n)
hay abcd+1353==k2
=>abcd=3136
Vậy số cần tìm là 3136
vào chữ số hàng trăm , thêm 5 đơn vị vào chữ số hàng chục , thêm 3 đơn vị vào chữ số hàng đơn vị thì ta vẫn được một số chính phương
Toán lớp 8 Số chính phương
Trần thị Loan 15/03/2015 lúc 23:50
Báo cáo sai phạm
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số đó là abcd
abcd là số chính phương nên đặt abcd = m2
Theo bài cho số (a +1)(b+3)(c+5)(d+3) là số chính phương nên đặt (a +1)(b+3)(c+5)(d+3) = n2 ( 31 < m < n < 100 do các số là đã cho là số chính phương có 4 chữ số)
Ta có: (a +1)(b+3)(c+5)(d+3) = 1000(a+1) + 100(b +3) + 10(c +5) + (d+3)
= abcd + 1000 + 300 + 50 + 3 = abcd + 1353
=> n2 - m2 = 1353
=> (n -m).(n +m)= 3.11.41 = 33.41 = 3.451 = 11.123
Do điều kiện của m; n nên 62 < m + n < 200
=> n - m = 11; n + m = 123
=>m = 56 => abcd = 3136
Vậy...
gọi A là số cp cần tìm. Đặt A = k^2 ( 31 <k < 100)
Theo đề ra A + 1000 + 300 + 50 + 3 = n^2 (n>k) <=> k^2 + 1353 = n^2
<=> (n - k)(n +k) = 1353 = 3.11.41. vậy có các khả năng sau
(n - k) = 3 & ( n +k ) =451 loại vì n+k <200
(n- k) = 11 & (n+k) = 123 <=> n= 67, k = 56. thay vào A = 3136 = 56 ^2, A + 1353=4489=67^2. thỏa mãn
(n -k) = 33 & (n +k)=41 <=> n = 37 k=4 loại.
vậy số chính phương cần tìm là 3136
Gọi:
+abcd= x^2; (1)
+(a+1)(b+3)cd=k^2; (2)
(2) ó k^2= (a+1)*1000+(b+3)*100+c*10+d=a*1000+b*100+c*10+d+1300=abcd+1300=x^2+1300
ð k^2-x^2=1300 hay (k-x)(k+x)=1300 (1)
Mà 1000<k^2<9999 => 31<k<100. Và tương tự 31<x<100.
ð 62<k+x<200.
Mặt khác ta có (k-x)+(k+x)=2k nên từ (1) => (k-x) và k+x đều là các số chẵn
Mà 1300=13*(2^2)*(5^2)
=.> (k-x)(k+x)=2*650=10*130=26*50
Do k-x< k+x và 62<k+x<200 nên => (k-x)(k+x)=10*130
ð k-x=10 và k+x=130 hay k=70 và x=60;
ð abcd=3600. Thừ lại thõa mãn.