Cho tam giác đều ABC nội tiếp (O).M là 1 điểm nằm trên cung nhỏ BC.Trên tia MA lấy điểm C sao cho MD=MB.Cm
a,MA là phân giác của BMC
b,Tam giác BMD là hình gì?Vì sao?
c,So sánh Tam giác ADB và CMB
d,MA=MB+MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có BM=MD (gt)
=> \(\Delta\)MBD cân tại M
Mặt khác \(\widehat{AMB}=\widehat{ACB}\) ( Hai góc nội tiếp chắn cung AB)
Mà \(\widehat{ACB}=60^0\)( tam giác ABC đều)
Suy ra \(\widehat{AMB}=60^0hay\widehat{DMB}=60^0\)
Vậy \(\Delta MBD\) đều
b) Ta có \(\Delta MBD\) đều ( CMT)
Suy ra : \(\widehat{DMB}=\widehat{DBC}+\widehat{CBM}=60^0\)(1)
Lại có : tam giác ABC đều (gt)
Suy ra : \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=60^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{MBC}\)
Xét hai tam giác ABD và CBM ta có
BC=BA (gt)
\(\widehat{ABD}=\widehat{MBC}\left(cmt\right)\)
BD=BM( tam giác MBD đều)
=> \(\Delta ABD=\Delta CBM\left(c.g.c\right)\)
c)\(\Delta ABD=\Delta CBM\left(cmt\right)\)
SUy ra AD=CM
mà AM=AD+DM
SUy ra MA=MC+MD
mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi
lời giải :
a) vì MD = MB nên \(\Delta MBD\)cân tại M
\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )
\(\Rightarrow\)\(\Delta MBD\)đều
b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :
MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )
\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD
c) Mà MB = MD ( câu a )
nên MC + MB = MD + AD = MA
d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)
\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )
Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC
Tự vẽ hình nha!
a, Xét (O) có AB = AC (gt) => cung AB = cung AC (đl)
=> góc AMB = góc AMC (vì hai góc nội tiếp chắn 2 cung bằng nhau thì bằng nhau)
=> MA là tia phân giác của góc BMC
b, Xét (O) có góc AMB = góc ACB (góc nội tiếp chắn cung AB)
mà góc ACB = 600 (gt)
=> góc AMB = 600 hay góc BMD = 600
Xét △BMD có MB = MD (gt) => △BMD cân tại M (dhnb)
lại có góc BMD = 600 (cmt)
=> △BMD đều (dhnb)
c, Vì △BMD đều (cmt) => MB = BD (tc)
Xét (O) có góc BAM = góc BCM (góc nội tiếp chắn cung BM)
hay góc BAD = góc BCM
Xét △ADB và △CMB có: AB = BC(gt), góc BAD = góc BCM (cmt), BD = MB (cmt)
Vậy △ADB = △CMB(cgc)
d, Vì △ADB = △CMB (cmt) => AD = MC (2 cạnh tương ứng)
Ta có MA = AD + MD
mà AD = MC (cmt), MD = MB (gt)
=> MA = MB + MC (đpcm)