K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Ta có 2xy+x-2y=4

=>2y(x-1)+x=4

=>2y(x-1)+x-1=3

=>2y(x-1)+(x-1)=3

=>(x-1).(2y+1)=3

=>x-1 và 2y + 1 la Ư(3)={-3;3;-1;1}

12 tháng 4 2018

2xy+x-2y=4

x.(2y+1)-2y=4

x.(2y+1)-(2y+1)=3

(2y+1).(x-1)=3

ta có: 3=1.3=-1.-3

lập bảng tìm x, y

thử

Vậy ...

22 tháng 2 2020

(x-1)(2y-1)= 11

=> x-1 thuộc B(11) ={ 1; 11;-1;-11}

=> x thuộc{ 2; 12; 0; -10}

Sau đó thay vào tìm y nha. Tui đi tơiiii đâyy

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

2xy-2y+x=11

=>x.(2y+1)-1.(2y+1)=12

=>(x-1).(2y+1)=12

=>12\(⋮\)x-1

=>x-1\(\in\)Ư(12)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)4;\(\pm\)6;\(\pm\)12}

+)Ta có bảng:

x-1-11-22-33-44-66-1212
2y+1-1212-66-44-33-22-11
x0\(\in\)Z2\(\in\)Z-1\(\in\)Z3\(\in\)Z-2\(\in\)Z4\(\in\)Z-3\(\in\)Z5\(\in\)Z-5\(\in\)Z7\(\in\)Z-11\(\in\)Z13\(\in\)Z
y\(\frac{-13}{2}\)\(\notin\)Z\(\frac{11}{2}\)\(\notin\)Z\(\frac{-7}{2}\text{​​}\)\(\notin\)Z\(\frac{5}{2}\)\(\notin\)Z\(\frac{-5}{2}\)\(\notin\)Z\(\frac{3}{2}\)\(\notin\)Z-2\(\in\)Z1\(\in\)Z\(\frac{-3}{2}\)\(\notin\)Z\(\frac{1}{2}\)\(\notin\)Z-1\(\in\)Z0\(\in\)Z

Vậy (x,y)\(\in\){(-3;-2);(5;1);(-11;-1);(13;0)}

Chúc bn học tốt

theo minh buoc 1 la nhom 2xy voi 2y

\(PT\Leftrightarrow y^2\left(x^2-6\right)-2xy-x^2=0\)

Xét \(\Delta'=x^2+x^2\left(x^2-6\right)\)\(=x^4-5x^{^2}\)

Do x,y nguyên nên \(\Delta'\)là số chính phương

Đặt \(x^4-5x^2=k^2\left(k\in N\right)\)

\(\Leftrightarrow x^2\left(x^2-5\right)=k^2\)

\(\Rightarrow x^2-5\)là số chính phương

Đặt \(x^2-5=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=5\)

Xét TH là tìm được nghiệm nhé :P

8 tháng 1 2019

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

9 tháng 1 2019

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

22 tháng 10 2017

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)

5 tháng 3 2020

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

5 tháng 3 2020

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0