Cho hai đường thẳng được xác định bởi
(d1): y=3x+5m+2 và (d2): y=7x-3m-6
a) xác định tọa độ giao điểmA của (d1) và (d2) khi m=0
b) CMR khi m thay đổi giao điểm A luôn chạy trên 1 đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là giao điểm
Pt hoành độ giao điểm:
\(3x_A-m-1=2x_A+m-1\Rightarrow x_A=2m\)
\(\Rightarrow\) Tung độ giao điểm: \(y_A=5m-1\)
\(\Rightarrow y_A=\dfrac{5}{2}.2m-1=\dfrac{5}{2}x_A-1\)
\(\Rightarrow\)Giao điểm của d1 và d2 luôn thuộc đường thẳng cố định: \(y=\dfrac{5}{2}x-1\)
\(m=1\Leftrightarrow\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=2x-2\end{matrix}\right.\\ \text{PTHDGD: }-2x-2=2x-2\Leftrightarrow x=0\Leftrightarrow y=-2\Leftrightarrow A\left(0;-2\right)\\ \text{PT giao Ox: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=-1\Leftrightarrow B\left(-1;0\right)\Leftrightarrow OB=1\\y=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\Leftrightarrow OC=1\end{matrix}\right.\\ \Leftrightarrow BC=1+1=2\\ AB=AC=\sqrt{2^2+1^2}=\sqrt{3}\\ OA=\left|-2\right|=2\\ \Leftrightarrow P_{ABC}=AB+BC+CA=2+2\sqrt{3}\left(đvd\right)\\ S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)
Gọi góc đó là \(\alpha\)
Vì \(2>0\Leftrightarrow\alpha< 90^0\)
\(\tan\alpha=2\Leftrightarrow\alpha\approx63^0\)
Pt hoành độ giao điểm:
\(3x-m-1=2x+m-1\Rightarrow\left\{{}\begin{matrix}x=2m\\y=5m-1\end{matrix}\right.\)
\(\Rightarrow y-\frac{5}{2}x=5m-1-\frac{5}{2}.2m=-1\)
\(\Rightarrow y=\frac{5}{2}x-1\)
Vậy giao điểm của 2 đường thẳng luôn nằm trên đường thẳng \(y=\frac{5}{2}x-1\)
Bài 3:
Vì (d)//(d1) nên a=3
Vậy: (d): y=3x+b
Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:
\(b+2=0\)
hay b=-2
Pt hoành độ giao điểm:
\(3x+5m+2=7x-3m-6\)
\(\Leftrightarrow4x=8m+8\Rightarrow x=2m+2\)
\(\Rightarrow y=3\left(2m+2\right)+5m+2\Rightarrow y=11m+8\)
Vậy \(A\left(2m+2;11m+8\right)\)
a,Giao của d1 và d2 là điểm có hoành độ thỏa mãn pt :
x -1 = - x + 3
x - 1 + x - 3 = 0
2x - 4 = 0
2x = 4
x = 2
thay x = 2 vào pt y = x - 1 => y = 2 - 1 = 1
Giao của d1 và d2 là A ( 2; 1)
b, để d1; d2; d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2 là điểm A ( 2; 1)
Thay tọa độ điểm A vào pt d3 ta có :
2.(m-2) .2 + (m-1) = 1
4m - 8 + m - 1 = 1
5m - 9 = 1
5m = 10
m = 2
vậy với m = 2 pt d3 là y = 2 -1 = 1 thì d1; d2 ; d3 đồng quy tại 1 điểm
c, vẽ đồ thị hàm số câu này dễ bạn tự làm nhé
Giao d1 với Ox là điểm có tung độ y = 0 => x -1 = 0 => x = 1
Vậy giao d1 với Ox là điểm B( 1;0)
độ dài OB là 1
Giao d1 với trục Oy điểm có hoành độ x = 0 => y = 0 - 1 = -1
Vậy giao d1 với Oy là điểm C ( 0; -1)
Độ dài OC = |-1| = 1
vẽ đồ thị bạn tự vẽ nhé
d, Xét tam giác vuông OBC có
OB = OC = 1 ( cmt)
=> tam giác OBC vuông cân tại O
=> góc OBC = ( 1800 - 900): 2 = 450
Kết luận d1 tạo với trục Ox một góc bằng 450