tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5, chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng chung của các số tự nhiên a chia 4 dư 1;chia 5 dư 4; chia 6 dư 5;chia hết cho 13 lần lượt là:4k+1;5k+4;6k+5;13k(trong đó k thuộc N*)
a chia cho 4 dư 3 có dạng :
4k + 3
a chia cho 5 dư 4 có dạng :
5q + 4
a chia cho 6 dư 5 có dạng :
6k + 5
a chia hết cho 13 có dạng :
13k
gọi số cần tìm là n (100<n<999)
n-1 chia hết cho 2 => (n-1)+1 chia hết cho 2 => n+1 chia hết cho 2
n-2 chia hết cho 3 => (n-2)+2 chia hết cho 3 => n+1 chia hết cho 3
n-3 chia hết cho 2 => (n-3)+3 chia hết cho 2 => n+1 chia hết cho 4
n-4 chia hết cho 2 => (n-4)+4 chia hết cho 2 => n+1 chia hết cho 5
n-5 chia hết cho 3 => (n-5)+5 chia hết cho 3 => n+1 chia hết cho 6
=> n+1 thuộc BC(2,3,4,5,6)
Ta có
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)=B(60)={0,60,120,......,960,1020,....}
100<n<999 => n=960-1=959
a-3/4 suy ra a+1/4
a-4/5 suy ra a+1/5
a-5/6 suy ra a+1/6
suy ra a+1 thuộc BCNN (4;5;6)
BCNN(4;5;6) =60
suy ra a thuộc {59:119;179;239;299;...}
mà a/13
suy ra a=299
vậy số đó là 299
dạng chung là:
a chia 4 thì dư 3:4k+3
a chia 5 dư 4:5k+4
a chia 6 dư 5:6k+5
a chia hết cho 13:13k
(trong đó k thuộc N*)
a) Gọi số cần tìm là a , ta có :
a + 2 sẽ chia hết cho cả 3 , 4 và 5
\(BCNN\left(3,4,5\right)=3.4.5=60\)
\(\Rightarrow a=60n-2=2\left(30n-1\right)\)( với n là số tự nhiên )
Mà \(a⋮13\)nên \(30n-1⋮13\)
Gía trị nhỏ nhất của a thỏa mãn khi \(n=10\)
\(\Rightarrow a=2.\left(300-1\right)=598\)
Vậy số tự nhiên đó là 598
a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5
\(\Rightarrow\)a + 1 \(⋮\)4,5,6
nên a + 1 \(⋮\) BCNN ( 4,5,6 )
\(\Rightarrow\)a + 1 \(⋮\)60
vì a + 1 \(⋮\)60 \(\Rightarrow\)a + 1 - 300 \(⋮\)60 hay a - 299 \(⋮\)60 ( 1 )
a \(⋮\)13 \(\Rightarrow\)a - 13 . 23 \(⋮\)13 hay a - 299 \(⋮\)13 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a - 299 \(⋮\)BCNN ( 60 ; 13 ) = 780
vậy dạng chung của a là : a = 780k + 299 ( k thuộc N )