Cho tam giác ABC. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.
a) Chứng minh: Tam giác ABM = Tam giác CDM
b) Chứng minh: AB // CD
c) Trên tia đối của tia CD lấy điểm N sao cho CD = CN
Chứng minh: BN // AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Ta có: ΔABM=ΔCDM
nên \(\widehat{ABM}=\widehat{CDM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔDBN có
M là trung điểm của BD(gt)
C là trung điểm của DN(gt)
Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)
Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)
hay BN//AC(đpcm)
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔABM=ΔCDM
b: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
c: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
a: Xét ΔADM và ΔCBM có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔADM=ΔCBM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
hay CD\(\perp\)AC
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD