cho tam giác AVC nhọn gọi M là trung điểm của ac trên tia đối của tia mb lấy điểm y sao cho bm = MI gọi N là trung điểm AB trên tia đối của tia NC lấy điểm K sao cho NK = NC chứng minh 3 điêm A K I thẳng hàng và A là chung điểm KI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
a: Xét ΔAMI và ΔCMB có
MA=MC
góc AMI=góc CMB
MI=MB
Do đó: ΔAMI=ΔCMB
b: Xét tứ giác ABCI có
M là trung điểm chung của AC và BI
nên ABCI là hình bình hành
Suy ra: AI//BC và AI=BC
Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
Suy ra: AK//BC và AK=BC
c: Ta có: AK//BC
AI//BC
Do đó: K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI
Xét ΔMAE và ΔMCB có:
MA = MC (M là trung điểm của AC)
∠AME = ∠CMB (2 góc đối đỉnh)
ME = MB (gt)
⇒ ΔMAE = ΔMCB (c.g.c)
⇒ AE = BC (2 cạnh tương ứng) (1)
Xét ΔNAF và ΔNBC có:
NA = NB (N là trung điểm của AB)
∠ANF = ∠BNC (2 góc đối đỉnh)
NF = NC (gt)
⇒ ΔNAF = ΔNBC (c.g.c)
⇒ AF = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) ⇒ AE = AF
Ta có: ΔMAE = ΔMCB (cmt)
⇒ ∠MAE = ∠MCB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)
Ta có: ΔNAF = ΔNBC (cmt)
⇒ ∠NAF = ∠NBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)
Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng
Bạn tham khảo ở đây:
https://h.vn/hoi-dap/question/820073.html
1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF
a: Xét ΔAMI và ΔCMB có
MA=MC
góc AMI=góc CMB
MI=MB
Do đó: ΔAMI=ΔCMB
b: Xét tứ giác ABCI có
M là trung điểm chung của AC và BI
nên ABCI là hình bình hành
Suy ra: AI//BC và AI=BC
Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
Suy ra: AK//BC và AK=BC
c: Ta có: AK//BC
AI//BC
Do đó: K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI
Bài 4:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của CK
Do đó: AKBC là hình bình hành
Suy ra: AK=BC
hay AK=2MC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM⊥BC
mà BC//AK
nên AM⊥AK
hay \(\widehat{MAK}=90^0\)
Câu1
a) Xét ΔABM và ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)
b) => góc ABM = góc MDC ( 32 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( điều phải chứng minh)
giúp với