Cho p là số nguyên tố lớn hơn 3. Hỏi p^2 chia cho 3 dư mấy? Nhanh hộ mk nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2(\(k>0\))
Nếu p=3k+1 thì \(p^2+2015=\left(3k+1\right)^2+2015\)
\(=9k^2+6k+1+2015=3k^2+6k+2016\)
\(=3\left(3k^2+2k+672\right)\)chia hết cho 3 và lớn hơn 3 nên là hợp số
Nếu p=3k+2 thì \(p^2+2015=\left(3k+2\right)^2+2015\)
\(=9k^2+12k+4+2015=9k^2+12k+2019\)
\(=3\left(3k^2+4k+673\right)\)chia hết cho 3 và lớn hơn 3 nên là hợp số
Vậy với p là số nguyên tố lớn hơn 3 thì \(P^2+2015\)là hợp số
vì q là số nguyên tố lớn hơn 3 nên q có dạng:3k+1 hoặc 3k+2(k E N)
+)q=3k+1=>p=3k+3=>p chia hết cho 3=>là hợp số,loại vì p là số nguyên tố lớn hơn 3
+)q=3k+2=>p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ=>k+1 chẵn
Ta có p+q=(3k+4)+(3k+2)=6k+6=6(k+1) chia hết cho 12 vì k+1 chẵn
Vậy p+q chia 12 có số dư là 0
Tick nhé
Vì p là SNT > 3 nên p là số lẻ
=> \(p^2\)là số lẻ
Mà 2003 là số lẻ nên \(p^2\)+2003 là số chẵn
=> \(p^2\)+2003 chia hết cho 2
Mà \(p^2\)+2003>2 nên \(p^2\)+2003 là hợp số
Vậy \(p^2\)+2003 là hợp số
Mình viết tắt tí mong bạn tick cho!!!
= 3q+2004
Vì 3q chia hết cho 3; 2004 chia hết cho 3 mà 3p+2004>1
=> 3q+2004 hợp số
Vậy p^2+2003 là hợp số
p là số nguyên tố > 3 => p=3k+1 hoặc p=3k+2
- p=3k+1 =>p^2 =(3k+1)^2= 9 k2+1 Vậy p^2 chia 3 dư 1
- p=3k+2 => p^2=(3k+2)^2= 9 k2+4 Vậy p^2 chia 3 dư 1