Cho hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^o\). Kẻ \(BH\perp CD\)tại H.
a) Chứng minh tứ giác ABHD là hình chữ nhật.
b) Cho biết AB = 3cm, BC = 5cm, CD = 6cm. Tính diện tích tứ giác ABHD.
c) Gọi E là giao điểm của AH và BD, M là trung điểm của BC và N là điểm đối xứng của M qua E. Chứng minh tứ giác CDNM là hình bình hành.
d) Kẻ \(CK\perp BD\)tại K. Gọi I là điểm đối xứng với K qua M. Chứng minh \(KH\perp IH\).
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)