chứng minh 2n+1 và 3n+1 là hai số nguyên tố cùng nhau (n thuộc N sao)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Dễ mà
Ta có ƯC( 2n+1 và 3n+1) là d
=> 2n+1 và 3n+1 chia hết cho d
=> 3(2n+1) chia hết cho d
=> 2(3n+1) chia hết cho d
=> 6n+3và 6n+2 chia hết cho d
=> 6n+3 - 6n+2 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯC( 2n+1 và 3n+1)=1
=> đpcm
bài này rất hóc búa!
vào câu hỏi tương tự nha!
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)
Khi đó:
\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)
\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)
\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)
Gọi d là ƯCLN(2n+1;3n+1)
Ta có:2n+1 chia hết cho d
3n+1 chia hết cho d
Suy ra (3n+1)-(2n+1) chia hết cho d
Suy ra 3n-2n chia hết cho d
Suy ra 1 chia hết cho d
Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Đặt ƯCLN (2n+1, 3n+1) là d
Ta có: \(2n+1⋮d\Rightarrow6n+3⋮d\) (1)
\(3n+1⋮d\Rightarrow6n+2⋮d\) (2)
Lấy (1) trừ (2), có: \(\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\)hay \(d\inƯ\left(1\right)\).....
Vậy.....