K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Đặt ƯCLN (2n+1, 3n+1)  là d 

Ta có: \(2n+1⋮d\Rightarrow6n+3⋮d\)      (1)

          \(3n+1⋮d\Rightarrow6n+2⋮d\)   (2)

Lấy (1) trừ (2), có: \(\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\)hay \(d\inƯ\left(1\right)\).....

Vậy.....

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

23 tháng 12 2022

loading...

Dễ mà 

Ta có ƯC( 2n+1 và 3n+1) là d

=> 2n+1 và 3n+1 chia hết cho d

=> 3(2n+1) chia hết cho d

=> 2(3n+1) chia hết cho d

=> 6n+3và 6n+2 chia hết cho d

=> 6n+3 - 6n+2 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯC( 2n+1 và 3n+1)=1

=> đpcm 

bài này rất hóc búa!

vào câu hỏi tương tự nha!

23 tháng 7 2016

a)Gọi 2 số tự nhiên liên tiếp là a;a+1

=>a+1-a  chia hết cho WCLN của a;a+1

=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi 2 số lẻ liên tiếp là a;a+2.

Làm như trên:

Hiệu:a+2-a=2

Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.

Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

c)Gọi WCLN(2n+1;3n+1)=d.

2n+1 chia hết cho d=>6n+3 chia hết cho d.

3n+1 ------------------=>6n+2 chia hết cho d.

Hiệu chia hết cho d,hiệu =1=>...

Vậy là số nguyên tố cùng nhau.

Chúc em học tốt^^

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

6 tháng 2 2023

Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)

Khi đó:

\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)

\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)

\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)

6 tháng 2 2023

Gọi d là ƯCLN(2n+1;3n+1)

Ta có:2n+1 chia hết cho d

          3n+1 chia hết cho d

Suy ra (3n+1)-(2n+1) chia hết cho d

Suy ra 3n-2n chia hết cho d

Suy ra 1 chia hết cho d

Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau