K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
25 tháng 5 2021

a.
$I$ là trung điểm của $CD$ nên $OI \perp CD$.


$\Rightarrow \widehat{SIO} = 90^{\circ}$.


Mà $\widehat{SAO} = \widehat{SBO} = 90^{\circ}$.


Suy ra 5 điểm $S,A,I,O,B$ cùng thuộc đường tròn đường kính $SO$.


Ta có $\widehat{SAC} = \widehat{ADC}$ (cùng chắn cung AC).


Xét $\Delta SAC$ và $\Delta SDA$ có


$\widehat{S}$ chung;


$\widehat{SAC} = \widehat{ADC}$


$\Rightarrow \Delta SAC \sim \Delta SDA$ (g.g).


$\Rightarrow \dfrac{SA}{SD} = \dfrac{SC}{SA} \Rightarrow SA^2 = SC.SD.$


b. 


$\Delta SAO$ vuông tại $A$ có đường cao $AH$.


$\Rightarrow SA^2 = SH.SO$.


Từ câu a ta có $SH.SO = SC.SA = SA^2 \Rightarrow \dfrac{SH}{SD} = \dfrac{SC}{SO}$.


Xét $\Delta SCH$ và $\Delta SOD$ có


$\widehat{S}$ chung;


$\dfrac{SH}{SD} = \dfrac{SC}{SO}$


$\Rightarrow \Delta SCH \sim \Delta SOD$ (c.g.c).


$\Rightarrow \widehat{SCH} = \widehat{SOD}$ (hai góc tương ứng)


$\Rightarrow CHOD$ nội tiếp.


c.


Ta có $AD // SB$, $OB \perp SB \Rightarrow OB \perp AD.$


Mà đường kính thì đi qua trung điểm day cung nên $BO$ đi qua trung điểm của AD. (1)


Áp dụng định lí Talet với $AD // SB$, $E = AB \cap SD$ và $F = ME \cap AD$.


$\Rightarrow \dfrac{FD}{SM} = \dfrac{ED}{SE} = \dfrac{AD}{SB} \Rightarrow \dfrac{SM}{SB} = \dfrac{FD}{AD} \Rightarrow F$ là trung điểm của $AD$.


Mà theo (1)  $BO$ đi qua trung điểm $F$ của $AD$ nên ba điểm $B,O,F$ thẳng hàng.

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

a: Xét ΔSCE và ΔSFC có

góc SCE=góc SFC

góc CSE chung

=>ΔSCE đồng dạng với ΔSFC

=>SC^2=SE*SF

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO