K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

Vì điểm M nằm trong đường tròn tâm O bán kính 4cm nên OM < 4cm.

4 tháng 5 2018

đáp án là A

a: Xét (O) có

MN,MP là tiếp tuyến

nên MN=MP

mà ON=OP

nên OM là trung trực của NP

b: Gọi giao của NP và OM là H

=>H là trung điểm của NP và NP vuông góc với OM tại H

\(NM=\sqrt{4^2-2^2}=2\sqrt{3}\left(cm\right)\)

=>\(NH=2\cdot\dfrac{2\sqrt{3}}{4}=\sqrt{3}\left(cm\right)\)

=>\(NP=2\sqrt{3}\left(cm\right)\)

NV
26 tháng 12 2022

Do MA là tiếp tuyến \(\Rightarrow OA\perp MA\) hay tam giác OAM vuông tại A

Áp dụng định lý Pitago:

\(MA=\sqrt{OM^2-OA^2}=\sqrt{\left(\dfrac{8R}{5}\right)^2-R^2}=\dfrac{R\sqrt{39}}{5}\)

Theo t/c hai tiếp tuyến cắt nhau ta có \(AM=BM\)

Mà \(OA=OB=R\Rightarrow OM\) là trung trực AB \(\Leftrightarrow\left\{{}\begin{matrix}OM\perp AB\\AK=BK\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông OAM:

\(AK.OM=OA.AM\Rightarrow AK=\dfrac{OA.AM}{OM}=\dfrac{R\sqrt{39}}{8}\)

\(\Rightarrow AB=2AK=\dfrac{R\sqrt{39}}{4}\)

Áp dụng định lý Pitago trong tam giác vuông AOK:

\(OK=\sqrt{OA^2-AK^2}=\sqrt{R^2-\left(\dfrac{R\sqrt{39}}{8}\right)^2}=\dfrac{5R}{8}\)

loading...