Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét 2 tam giác AMI và KIM, có:
Cạnh MI chung
Góc KIM=góc AMI (2 góc so le)
Góc MIA=góc KMI (2 góc so le)
=> tam giác AMI = Tam giác KIM (Góc-cạnh-góc)
=> AM=IK (2 cạnh tương ứng)
b/
Xét 2 tam giác IKM và KIC, có:
Cạnh IK chung
Góc IKC=góc KIM (2 góc so le)
Góc KIC=góc IKM (2 góc so le)
=> tam giác IKC = Tam giác IKM (Góc-cạnh-góc) (1)
Theo a) ta đã chúng minh được: tam giác AMI = Tam giác IKM (2)
Từ 1) và (2) suy ra:
Tam giác AMI=Tam giác IKC
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
bạn vào link này nha :
https://olm.vn/hoi-dap/detail/25403671805.html
Học tốt
Thanks
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
a) Xét tứ giác MIBK có :
MI // BC ( GT )
MB // IK ( vì AB // IK )
=> MIBK là hình bình hành
=> MB = IK ( tính chất )
Mà MB =AM
=> IK = AM
b)Cm MI đường trung bình là ra
c) Từ ý b = > AI = IC
Mình nhớ là lớp 7 chưa học hình bình hành. Nếu đã được học thì tham khảo thêm cách làm bạn Việt Hoàng.
Nhắc lại đề bài 1 chút: Chúng ta có: M là trung điểm AB; MI//BC và IK //AB
a) Nối M, K.
Xét \(\Delta\)MIK và \(\Delta\)KBM có:
^IMK = ^BKM ( so le trong; MI//BC )
MI chung
^IKM = ^BMK ( so le trong; IK//AB )
=> \(\Delta\)MIK = \(\Delta\)KBM ( g.c.g)
=> IK = BM ( cạnh tương ứng ) (1)
Mặt khác M là trung điểm AB ( giả thiết ) => AM = BM ( 2)
Từ (1); (2) => AM = IK.
b) Có: AB // IK => ^AMI = ^MIK ( so le trong )
MI // BC => ^MIK = ^IKC ( so le trong )
=> ^AMI = ^IKC ( 3)
Lại có : AB // IK => ^CIK = ^CAB ( đồng vị ) => ^CIK = ^IAM (4)
Xét\(\Delta\)CIK và \(\Delta\)IAM có:
^AMI = ^IKC ( theo (3))
AM = IK ( theo a)
^IAM = ^CIK ( theo ( 4)
=> \(\Delta\)CIK = \(\Delta\)IAM ( g.c.g)
c) \(\Delta\)CIK = \(\Delta\)IAM ( theo câu b)
=> AI = IC ( cạnh tương ứng )
a) Xét ΔCBM và ΔADM có:
AM=MC (giả thtết)
gócCMB=gócAMD ( đối đỉnh)
BM=MD (giả thiết)
⇒ ΔCBM=ΔADM (c.g.c)
BC=DA (hai cạnh tương ứng)
b) Xét ΔABM và ΔCDM có:
AM=CM (giả thiết)
gócAMB=gócCMD(đối đỉnh)
BM=DM (giả thiết)
⇒ ΔABM=ΔCDM (c.g.c)
gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)
⇒ DC⊥AC (đpcm)
c) Ta có BN//AC mà AC⊥DC
⇒ BN⊥DC ⇒gócBND=90độ
AB//CD (do cùng ⊥AC)
Xét ΔABC và ΔNBC có:
gócABC=gócNCB (hai góc ở vị trí so le trong)
BC chung
gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)
⇒ ΔABC=ΔNBC (g.c.g)
⇒ AB=NC (hai cạnh tương ứng)
Xét ΔABM và ΔCNM có:
AB=CN (cmt)
góc BAM=gócNCM=90độ
góc BAM= gócNCM=90độ
AM=CM (giả thiết)
⇒ ΔABM=ΔCNM (đpcm)
a,Nối MK
Vì MI // BC (GT)
⇒ \(\widehat{MKB}\) = \(\widehat{IMK}\) (2 góc SLT)
Vì AB//IK (GT)
⇒ \(\widehat{BMK}\) = \(\widehat{MKI}\)( 2 góc SLT)
Xét ΔBMK và ΔIKM có:
\(\widehat{MKB}\)= \(\widehat{KMI}\)(CMT)
MK là cạnh chung
\(\widehat{BMK}\) = \(\widehat{IKM}\)(CMT)
⇒ ΔBMK = ΔIKM (g.c.g)
⇒ BM = IK (2 cạnh tương ứng)
mà BM = AM (M là trung điểm của AB)
nên IK = AM (=BM)
b, Vì AB // IK(GT)
mà M ∈ AB
⇒ AM // IK
⇒ \(\widehat{A}=\widehat{KIC}\) (2 góc đồng vị)
Vì AB // IK (GT)
⇒ \(\widehat{ABK}=\widehat{IKC}\) (2 góc đồng vị)
lại có: MI // BC(GT) ⇒ \(\widehat{AMI}=\widehat{ABK}\)(2 góc đồng vị)
Vậy \(\widehat{AMI}=\widehat{IKC}\)
Xét ΔAMI và ΔIKC có:
\(\widehat{A}=\widehat{KIC}\left(CMT\right)\)
AM=IK (CMT)
\(\widehat{AMI}=\widehat{IKC}\left(CMT\right)\)
⇒ ΔAMI = ΔIKC (g.c.g)
c, Ta có: ΔAMI = ΔIKC (CMT)
⇒ AI = IC (2 cạnh tương ứng)
a) Ta có:MI // BC, IK // AB (gt)
Áp dụng tính chất đoạn chắn, ta có:
MI = BK
MB = IK
mà MA = MB (M là trung điểm của AB)
=> IK = MA (ĐPCM)
b) Ta có: ∠AMI = ∠KBM (2 góc đồng vị)
∠KBM = ∠CFE (2 góc đồng vị)
=> ∠AMI = ∠CFE
Xét ΔAMI và ΔIKC có:
IK = MA (cmt)
∠A = ∠KIC (2 góc đồng vị)
∠AMI = ∠CFE (cmt)
=> ΔAMI = ΔIKC (ĐPCM)
c) Ta có ΔAMI = ΔIKC (cmt)
=> AI = IC
=> I là trung diểm của AC
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath