Có hay không?
a)Tồn tại số tự nhiên x<17 sao cho 25x-1 chia hết cho 17
b)Tồn tại số có dạng 19941994...1994 gồm k số 1994 với k thuộc N và 1<k<1994 chia hết cho 1993
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu bài: Tìm 2 số tự nhiên x, y thỏa mãn điều kiện: (x+y) x (x-y) = 2010
BÀI GIẢI:
Xét 4 trường hợp với biểu thức đã cho:
(x+y) x (x-y) = 2010
1) Trường hợp 1:
(x+y) là số lẻ x (x-y) cũng là số lẻ => tích là số lẻ
Trường hợp 1 này không thỏa mãn vì 2010 là số chẵn
2) Trường hợp 2:
(x+y) là số chẵn x (x-y) cũng là số chẵn
2 thừa số là chẵn phải chia hết cho 2 => tích 2 số chẵn phải chia hết cho 4
Trong khi đó, 2010 không chia hết cho 4 nên trường hợp 2 này cũng không thỏa mãn
3) Trường hợp 3:
(x+y) là số lẻ x (x-y) là số chẵn
↓↓ ↓↓
lẻ + lẻ = chẵn (loại) > < lẻ - lẻ = chẵn (Ok)
chẵn + chẵn = chẵn (loại) > < chẵn - chẵn = chẵn (Ok)
chẵn + lẻ = lẻ (Ok) > < chẵn - lẻ = lẻ (loại)
lẻ + chẵn = lẻ (Ok) > < lẻ - chẵn = lẻ (loại)
=> Với x,y bị loại vì không đáp ứng điều kiện của (x+y) thì lại đáp ứng của (x-y) và ngược lại.
Do vậy, không có số tự nhiên nào thỏa mãn trường hợp 3.
4) Trường hợp 4:
(x+y) là số chẵn x (x-y) là số lẻ
↓↓ ↓↓
lẻ + lẻ = chẵn (Ok) > < lẻ - lẻ = chẵn (loại)
chẵn + chẵn = chẵn (Ok) > < chẵn - chẵn = chẵn (loại)
chẵn + lẻ = lẻ (loại) > < chẵn - lẻ = lẻ (Ok)
lẻ + chẵn = lẻ (loại) > < lẻ - chẵn = lẻ (Ok)
=> Với x,y đáp ứng điều kiện của (x+y) thì lại không đáp ứng của (x-y) và ngược lại.
Do vậy, không có số tự nhiên nào thỏa mãn trưởng hợp 4
KẾT LUẬN: Không có số tự nhiên nào đáp ứng đầu bài.
Vì (x + y) - (x - y) = 2y chia hết cho 2
=> x + y và x - y có cùng tính chẵn lẻ
+) Nếu x + y và x - y cùng lẻ thì (x + y)(x - y) lẻ, mâu thuẫn với (x + y)(x - y) = 2010
+) Nếu x + y và x - y cùng chẵn thì (x + y)(x - y) chia hết cho 4, mâu thuẫn với (x + y)(x - y) = 2010 không chia hết cho 4
Vậy không tồn tại hai số tự nhiên x,y mà (x+y).(x-y)=2010
Lời giải:
Nếu $n=2k$ với $k$ tự nhiên. Khi đó:
$A=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Nếu $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=3^{2k+1}+4=9^k.3+4\equiv 1^k.3+4\equiv 7\pmod 8$
Mà 1 scp khi chia 8 có dư 0, 1
$\Rightarrow A$ không thể là scp.