rút gọn phân thức:
\(\frac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1\)
\(=\left(x^{27}+x^{21}+x^{15}+x^9+x^3\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=x^3\left(x^{24}+x^{18}+x^{12}+x^6+1\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
Vậy ta có
\(VT=\dfrac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\dfrac{1}{x^3+1}\) (đpcm)
\(\frac{x^{10}-x^8-x^7+x^6+x^6+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}=\frac{(x^{10}-x^8+x^6)-(x^7-x^5+x^3)+(x^4-x^2+1)}{ (x^{30}+x^{18}+x^{24})+(x^{12}+x^6+1)} \)
=\(\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+x^6+1)(x^{18}+1 )}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+2x^6+1-x^6) (x^6+1)(x^{12}-x^6+1)}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{ (x^6-x^3+1)(x^6+x^3+1)(x^2+1)(x^4-x^2+1)(x^12-x^6+1 )} \)
=\(\frac{1}{(x^6+x^2+1)(x^2+1)(x^{12}-x^6+1)}\)
1, 2x - 35 = 15
2x = 15 + 35
2x = 50
x = 50 : 2
x = 25.
2, 3x + 18 = 12
3x = 12 - 18
3x = -6
x = -6 : 3
x = -2.
3, / x - 1 / = 0
=> x \(\in\varnothing\).
4, -13 /x/ = - 26
/x/ = -26 : -13
=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy x \(\in\){ 2 ; -2}.
5,4 - ( 27 - 3 ) = x - ( 13 - 4 )
4 - 24 = x - 9
-20 = x - 9
-x = 9 + 20
-x = 29
x = -29.
6, 47 - ( x + 15 ) = 21
47 - x - 15 = 21
-x - 15 = 21 - 47
-x - 15 = -26
-x = -26 + 15
-x = - 11
x = 11.
7, -5 -( 24 - x) = - 11
-5 - 24 + x = -11
-24 + x = -11 + 5
-24 + x = -6
x = -6 + 24
x = 18.
8, 6 - /x/ = 2
/x/ = 6 - 2
\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy x \(\in\left\{3;-3\right\}.\)
9, 6 + /x/ = 2
/x/ = 2 - 6
=> x = -4.
2x - 35 = 15
=> 2x = 15 + 35
=> x = 50 : 2
=> x = 25
3x + 18 = 12
=> 3x = 12 - 18
=> x = ( -6 ) : 3
=> x = -2
| x - 1 | = 0
=> x - 1 = 0
=> x = 0 + 1
=> x = 1
-13 * | x | = -26
=> | x | = -26 : ( -13 )
=> | x | = 2
\(\frac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1}=\frac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{24}\left(x^3+1\right)+x^{18}\left(x^3+1\right)+x^{12}\left(x^3+1\right)+x^6\left(x^3+1\right)+\left(x^3+1\right)}\)
=\(\frac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\frac{1}{x^3+1}\)