K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

5 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: ABD = CBM (cmt)

suy ra: AD = CM

Ta có: DM = BM ( tam giác MBD đều )

mà AM = AD + DM

suy ra: MA = MC + MB

19 tháng 4 2017

Lười quá, chắc mình giải câu c thôi ha.

Vẽ \(OH\) vuông góc \(d\) tại \(H\)\(AB\) cắt \(OH\) tại \(L\)\(OM\) cắt \(AB\) tại \(T\)

H M A B O d L T .

CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.

19 tháng 4 2017

Mơn Trần Quốc Đạt nha

22 tháng 3 2020

1, 

Tam giác ABC có CA=CB và ACB=90 => ACB vuông cân

11 tháng 2 2019

a ) Ta có BM=MD (gt)

=> \(\Delta\)MBD cân tại M

Mặt khác \(\widehat{AMB}=\widehat{ACB}\) ( Hai góc nội tiếp chắn cung AB)

\(\widehat{ACB}=60^0\)( tam giác ABC đều)

Suy ra \(\widehat{AMB}=60^0hay\widehat{DMB}=60^0\)

Vậy \(\Delta MBD\) đều

b) Ta có \(\Delta MBD\) đều ( CMT)

Suy ra : \(\widehat{DMB}=\widehat{DBC}+\widehat{CBM}=60^0\)(1)

Lại có : tam giác ABC đều (gt)

Suy ra : \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=60^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{MBC}\)

Xét hai tam giác ABD và CBM ta có

BC=BA (gt)

\(\widehat{ABD}=\widehat{MBC}\left(cmt\right)\)

BD=BM( tam giác MBD đều)

=> \(\Delta ABD=\Delta CBM\left(c.g.c\right)\)

c)\(\Delta ABD=\Delta CBM\left(cmt\right)\)

SUy ra AD=CM

mà AM=AD+DM

SUy ra MA=MC+MD