Cho hình thanh ABCD có AB // CD; AB > CD và 2 đường chéo AC và BD vuông góc. Trên cạnh đáy AB ta lấy điểm M sao cho AM có độ dài bằng độ dài đường trung bình hình thang. Chứng minh CA là phân giác góc MCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
Có: AB // CD
=> góc ABD = góc BDC (so le trong)
=> AD // BC (dấu hiệu nhận biết 2 đường thẳng //)
=> Hình thang ABCD là hình bình hành
Mà: AB = AD = CD
=> Hình bình hành ABCD là hình thoi
=> Góc ADB = góc BDC (t/chất của hình thoi)
b) Câu này nếu đề là "CA có phải là p/giác của góc C (hoặc góc A) ko vì sao?" thì đáp án là:
- Vì CA là đường chéo của hinh thoi ABCD nên suy ra CA là đường p/giác của góc C (hoặc góc A) (t/chất của hình thoi)
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
mà A - D = 200
=> A = (1800 + 200) : 2 = 1000
=> D = (1800 - 200) : 2 = 800
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{B}{2}=\frac{C}{1}=\frac{B+C}{2+1}=\frac{180^0}{3}=60^0\)
\(\frac{B}{2}=60^0\Rightarrow B=60^0\times2=120^0\)
\(\frac{C}{1}=60^0\Rightarrow C=60^0\times1=60^0\)
Vậy A = 1000 ; B = 1200 ; C = 600 ; D = 800