Giúp mình giải câu hỏi này với:
1x2x3+2x3x4+3x4x5+...+100x101x102/2x4x6+4x6x8+6x8x10+...+200x202x204
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1X2X3+2X4X6+4X8X12+8X16X24}{2X3X4+4X6X8+8X12X16+8X24X32}\)
\(A=\frac{1+1+1+1}{4+4+4+2}\)
\(A=\frac{4}{14}\)
CHÚC BẠN HỌC GIỎI !
Giúp mình với. Cảm ơn nhiều!
Tính:
1/(1x2x3) + 1/(2x3x4) + 1/(3x4x5) + ... + 1/(100x101x102) = ?
Ta có:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{100.101.102}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{100.101.102}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}-\frac{1}{101.102}=\frac{2575}{5151}\Leftrightarrow A=\frac{2575}{10302}\)
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt
\(\frac{1}{2.4.6}+\frac{1}{4.6.8}+\frac{1}{6.8.10}+..+\frac{1}{50.52.54}\)
\(=\frac{1}{4}.\left(\frac{1}{2.4}-\frac{1}{4.6}+\frac{1}{4.6}-\frac{1}{6.8}+....+\frac{1}{50.52}-\frac{1}{52.54}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{2.4}-\frac{1}{52.54}\right)\)
\(=\frac{1}{4}.\frac{175}{1404}=\frac{175}{5616}\)
\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=190/380-1/380
=189/380
Gọi biểu thức trên là S. Ta có :
\(S=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+\dfrac{1}{3\times4\times5}+...+\dfrac{1}{18\times19\times20}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{18\times19\times20}\right)\)
Trước tiên, ta áp dụng : \(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta sẽ có :
\(S=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{18\times19}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1}{1\times2}-\dfrac{1}{2}\times\dfrac{1}{19\times20}\)
\(=\dfrac{1}{4}-\dfrac{1}{760}=\dfrac{189}{760}\)