K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

5 tháng 11 2017

\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\dfrac{8}{27}\)

\(=\dfrac{11}{54}\)

5 tháng 11 2017

Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx

Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\)\(2^{-1}< 2^{51}\) là điều quá rõ rồi

Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx

Chúc bn học tốt banhbanhbanhbanhbanh

7 tháng 8 2018

\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)

= \(4.\left(\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)

=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)

= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)

= \(1.\dfrac{8}{27}\)

= \(\dfrac{8}{27}\)

24 tháng 10 2017

a) \(D=\left(2\dfrac{2}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\right)\div\left(-\dfrac{3}{17}\right)\)

\(D=\dfrac{32}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\times\dfrac{-17}{3}\)

\(D=\dfrac{-3}{5}\)

b) \(\dfrac{1}{2}-\dfrac{1}{3\times7}-\dfrac{1}{7\times11}-\dfrac{1}{11\times15}-\dfrac{1}{15\times19}-\dfrac{1}{19\times23}-\dfrac{1}{23\times27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+\dfrac{1}{15\times19}+\dfrac{1}{19\times23}+\dfrac{1}{23\times25}\right)\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+\dfrac{4}{11\times15}+\dfrac{4}{15\times19}+\dfrac{4}{19\times23}+\dfrac{4}{23\times27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{9-1}{27}\right)\right]\)

\(=\dfrac{1}{2}-\dfrac{1}{4}\times\dfrac{8}{27}\)

\(=\dfrac{1}{2}-\dfrac{2}{27}\)

\(=.....\)

Đó đến đây bn tự lm nốt. Câu c bn lm tương tự.

Mình cho bn dạng này, nếu bn chưa biết (để lm câu c)

\(\dfrac{x}{y\left(y+x\right)}=\dfrac{x}{y}-\dfrac{x}{y+x}\)

Chúc bn học tốtbanhbanhbanhbanhbanh

25 tháng 3 2022

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)

 

25 tháng 3 2022

thanks youhehe

\(A=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-20\cdot11}{2\cdot9}=\dfrac{-110}{9}\)

\(B=\dfrac{2}{4}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)

=1/2*4/55

=2/55

28 tháng 7 2020

Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)

28 tháng 7 2020

Trả lời:

\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)

\(=\frac{1}{2}-\frac{2}{27}\)

\(=\frac{23}{54}\)

Học tốt 

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)

\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)

\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)

\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)