tìm tất cả các bộ ba số nguyên dương (x,y,z) thỏa mãn xyz= \(x^2-2z+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
Em làm cô vui lòng xem giúp em ạ
Có: \(x,y,z>0\)
Nên: \(7^y>1\)
Mà \(7^y+2^z=2^x+1\)(1)
\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)
Xét TH1: y lẻ
Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)
\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)
Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)
\(\Leftrightarrow7^y-1\equiv2\)(mod 4)
Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)
Thay vào PT: \(2^x-2=7^y-1\)
\(\Leftrightarrow2^x=7^y+1\)
\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)
Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)
Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)
TH2: Khi y chẵn:
\(2^z\left(2^{x-z}-1\right)=7^y-1\)
Vì y chẵn nên:
\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)
Vì: \(2^{x-z}-1\equiv1\)(mod 2)
Nên: \(2^z=16\Rightarrow z=4\)
Thế vào:
\(2^x+1=7^y+16\)
\(\Leftrightarrow2^x=7^y+15\)
\(\Leftrightarrow2^x=7^y+7+8\)
\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)
\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)
Vì S chia hết cho 8
nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)
\(\Rightarrow y=2\)
Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)
Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)
Giải thích các bước giải:
mà
Vì z là số nguyên dương
mà y là số nguyên dương và
Thế vào và
+) Với
Với
Vậy ta có các cặp nghiệm là: