K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:

   \(AM^2+CM^2=CA^2\)

Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)

Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)

=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)

Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:

AC^2+AB^2=BC^2

Hay 5^2+AB^2=\(\sqrt{51}^2\)

=>AB=\(\sqrt{26}\)

b) BN=\(\frac{\sqrt{26}}{2}\)

CP=\(\frac{\sqrt{74}}{2}\)

Hình như vậy đó bạn

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

5 tháng 5 2022

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

b) Do \(AD=AB\) nên \(CA\) là trung tuyến 

Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến

\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)

\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)

c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)

\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...