cho 2 đường thẳng
(d1) 3x-5y+2=0
(d2) 5x-2y+4=0
lập phương trình đường thẳng (d) đi qua giao điểm của 2 đươnè thẳng trên và:
a) song song với đường thẳng (d3) 2x-y+4=0
b) đi qua điểm M(1;4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm A của d1 và d2 là nghiệm:
\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)
\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:
\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)
Giao điểm A của d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-2y+5=0\\2x-3y+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(1;3\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-1\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-15=0\)
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
Gọi M là giao điểm của \(d_1\) và \(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)