Cho hình vuông ABCD. M là một điểm tùy ý trên đường chéo BD. KẺ ME vuông góc AB, MF vuông góc AD
a) Chứng minh DE=CF Và DE vuông góc CF
B) CMR ba đường thẳng DE, BF, CM đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DFM\) vuông tại F có \(\angle FDM=45\Rightarrow\Delta DFM\) vuông cân tại F
\(\Rightarrow DF=FM\)
Vì \(\angle MFA=\angle MEA=\angle EAF=90\Rightarrow AEMF\) là hình chữ nhật
\(\Rightarrow AE=FM=DF\)
Xét \(\Delta DCF\) và \(\Delta ADE:\) Ta có: \(\left\{{}\begin{matrix}AD=CD\\DF=AE\\\angle DAE=\angle CDF=90\end{matrix}\right.\)
\(\Rightarrow\Delta DCF=\Delta ADE\left(c-g-c\right)\Rightarrow DE=CF\)
b) \(\Delta DCF=\Delta ADE\Rightarrow\angle DCF=\angle ADE\)
\(\Rightarrow\angle DCF+\angle DFC=\angle ADE+\angle DFC\Rightarrow\angle ADE+\angle DFC=90\)
\(\Rightarrow DE\bot FC\)
Tương tự chứng minh được: \(BF\bot CE\)
Gọi giao điểm của DE,BF là H \(\Rightarrow H\) là trực tâm tam giác CEF
\(\Rightarrow CH\bot EF\left(1\right)\)
FM cắt CB tại G,CM cắt AD tại I
Dễ dàng chứng minh được DCFG là hình chữ nhật
\(\Rightarrow CG=DF=AE\)
Ta có: \(MG=FG-FM=CD-FD==AD-FD=AF\)
Xét \(\Delta CMG\) và \(\Delta EFA:\) Ta có: \(\left\{{}\begin{matrix}MG=AF\\AE=CG\\\angle CGM=\angle EAF=90\end{matrix}\right.\)
\(\Rightarrow\Delta CMG=\Delta EFA\left(c-g-c\right)\Rightarrow\angle AFE=\angle CMG=\angle FMI\)
\(\Rightarrow\angle AFE+\angle FIM=\angle FMI+\angle FIM\Rightarrow\angle AFE+\angle FIM=90\)
\(\Rightarrow CM\bot EF\left(2\right)\)
Từ (1) và (2) \(\Rightarrow C,H,M\) thẳng hàng \(\Rightarrow\) đpcm
à nhầm ngay cái chỗ từ 1 ở câu a và 2
bạn sửa lại dùm mình thành từ 1 và 2 nha mình viết nhầm
Dễ thấy AEMF là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
Tương tự dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
a) xet tg DEA va tg DFC ta co;
A=D=90 ; AD=DC; AE=MF=DF ( vi tg DFM vuong can)
vay 2 tg = nhau => DE=CF
b) h di em lam
c)diem M se nam o giao diem 2 dg cheo khi do AEMF la hinh vuong se co Smax
( em hoc lop 6 ma chang nat oc j )
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.