giúp mình với
tìm nghiệm nguyên của phương trình :x^2-4x+2y-xy+9=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x+2y-xy+9=0\)
\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)
⇒\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)
Vì đề kêu tìm nghiệm nguyên nên ta có
Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)
Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
\(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
\(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
\(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
\(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)