K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

thôi ,mk giải được rồi nhé ,thanks các b đã qtâm  .nếu có ai giống bài mk mà chưa giải được có thể ib mk ạ

8 tháng 9 2019

Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)

\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)

\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)

\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)

\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)

\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)

\(=-33+4\left(1+1+1\right)^2=-33+36=3\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(P_{min}=3\)khi \(x=y=z=1\)

31 tháng 3 2023

mình chịu

31 tháng 3 2023

không biết làm

6 tháng 7 2023

phân tích đa thức thành nhân tử

 

17 tháng 12 2020

Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)

\(\Rightarrow x^4\le15x-14\).

Tương tự: \(y^4\le15y-14;z^4\le15z-14\).

Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:

\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).

Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.

Vậy...

17 tháng 12 2020

cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14

có phưong pháp nào ko

nếu có thì bn giúp mk vs nhé

29 tháng 6 2017

Áp dụng BĐT Cauhy-Schwarz ta có:

\(A=x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{\frac{1}{9}}{3}=\frac{1}{27}\)

Xảy ra khi x=y=z=1/3

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)