Tìm x biết:
27/3^x (23 phần 3 mũ x) =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)x+\left(-5\right)=-14\)
\(\Leftrightarrow x=-14-\left(-5\right)\)
\(\Leftrightarrow x=-14+5\)
\(\Leftrightarrow x=-9\)
\(b)-x+7=-23\)
\(\Leftrightarrow-x=-23+ \left(-7\right)\)
\(\Leftrightarrow-x=-30\)
\(\Leftrightarrow x=30\)
\(c)112-x=\left(-3\right).\left(-15\right)\)
\(\Leftrightarrow112-x=45\)
\(\Leftrightarrow x=112-45\)
\(\Leftrightarrow x=67\)
\(d)\left(x-15\right)-27=5^5:5^3\)
\(\Leftrightarrow\left(x-15\right)-27=5^2\)
\(\Leftrightarrow\left(x-15\right)-27=25\)
\(\Leftrightarrow x-15=52\)
\(\Leftrightarrow x=67\)
\(e)\left(2x+1\right)^2=81\)
\(\Leftrightarrow\left(2x+1\right)^2=9^2\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
\(f)(x-5^3)=-27\)
\(f)(x-5^3)=-9^3\)
\(\Leftrightarrow x-5=-9\)
\(\Leftrightarrow x=-4\)
P/s: Bạn tự kết luận.
a) \(\left(x-3\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=3^2\\\left(x-3\right)^2=\left(-3\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
Vậy ........
b) \(3^{x-1}=27\)
\(3^{x-1}=3^7\)
\(\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=6\)
Vậy ...
a) \(\left(x-3\right)^2=9\Rightarrow\left(x-3\right)^2=3^2\Rightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3+3=6\\x=-3+3=0\end{cases}}\)
Vậy x = 6 hoặc 0
b) \(3^{x+1}=27\)
\(\Leftrightarrow3^{x+1}=3^3\Rightarrow x+1=3\Rightarrow x=2\)
Vậy x = 2
a.\(x^3-8=x^3-2^3=\left(x-2\right)\left(x^2+2x+4\right)\)
b.\(27x^3+125y^3=\left(3x\right)^3+\left(5y\right)^3=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
c.\(\left(2x-1\right)^3+8=\left(2x-1\right)^3+2^3=\left(2x+1\right)\left[\left(2x-1\right)^2-2\left(2x-1\right)+4\right]\)
d.\(x^6+6^3=\left(x^2+6\right)\left(x^4-6x+36\right)\)
e.\(1-27x^3=1-\left(3x\right)^3=\left(1-3x\right)\left(1+3x+9x^2\right)\)
j.\(\left(x-3\right)^3-27=\left(x-3\right)^3-3^3=\left(x-6\right)\left[\left(x-3\right)^2+3\left(x-3\right)+9\right]\)
g.\(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
t.\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
u.\(x^3+\frac{1}{27}=x^3+\left(\frac{1}{3}\right)^3=\left(x+\frac{1}{3}\right)\left(x^2-\frac{x}{3}+\frac{1}{9}\right)\)