Cho S =\(\frac{1}{50}\)+\(\frac{1}{51 }\)+\(\frac{1}{52}\)+...+\(\frac{1}{98}\)+\(\frac{1}{99}\)
Chứng tỏ rằng S >\(\frac{1}{2}\)
DDODOGDOGE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(có 50 số hạng)\(=\frac{50}{100}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\) .
Có: \(\frac{1}{50}>\frac{1}{100}\\ \frac{1}{51}>\frac{1}{100}\\ \frac{1}{52}>\frac{1}{100}\\ .\\ .\\ .\\ \frac{1}{98}>\frac{1}{100}\\ \frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)(có 50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}\cdot50\)
\(\Rightarrow S>\frac{50}{100}\)
\(\Rightarrow S>\frac{1}{2}\left(đpcm\right)\)
S = 1 / 50 + 1 / 51 +...+ 1 / 99 > 1 / 99 + 1 / 99 +...+ 1 / 99 = 50 / 99 > 50 / 100 = 1/2
\(S=\frac{1}{50}+\frac{1}{51}+.....+\frac{1}{99}>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)
S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)
Kết luận vậy S > 1/2
Ta có: \(\frac{1}{50}\)>\(\frac{1}{100}\)
\(\frac{1}{51}\)>\(\frac{1}{100}\)
\(\frac{1}{52}\)>\(\frac{1}{100}\)
..................
\(\frac{1}{99}\)>\(\frac{1}{100}\)
=>\(\frac{1}{50}\)+\(\frac{1}{51}\)+.............+\(\frac{1}{99}\)>\(\frac{1}{100}\).50=\(\frac{1}{2}\)(50 là số số hạng của S nha)
=>S>\(\frac{1}{2}\)
ta có 1/51>1/100
1/52>1/100
..................
1/100=1/100
\(\Rightarrow\)S=1/51+1/52+...+1/100>(1/100+1/100+...+1/100)=1/100.50=1/2
\(\Rightarrow\)S>\(\frac{1}{2}\)
cái chỗ 1/100+1/100+...+1/100 có 50 số bạn nhá
chúc bạn học tốt~
Giải:
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\)
\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\)
\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\)
thôi nhầm tiêu đề, xin lỗi bạn!